

(12) United States Patent Zhu et al.

(10) **Patent No.:**

US 9,416,108 B2

(45) **Date of Patent:**

Aug. 16, 2016

Ι

(54) HETEROCYCLIC ASPARTYL PROTEASE **INHIBITORS**

(71) Applicant: Merck Sharp & Dohme Corp.,

Rahway, NJ (US)

Inventors: **Zhaoning Zhu**, Plainsboro, NJ (US);

Andrew W. Stamford, Chatham

Township, NJ (US)

(73) Assignee: Merck Sharp & Dohme Corp.,

Rahway, NJ (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/575,418

Dec. 18, 2014 (22)Filed:

Prior Publication Data (65)

> US 2015/0105354 A1 Apr. 16, 2015

Related U.S. Application Data

- (62) Division of application No. 13/402,521, filed on Feb. 22, 2012, now Pat. No. 8,937,093, which is a division of application No. 12/480,391, filed on Jun. 8, 2009, now Pat. No. 8,178,513, which is a division of application No. 11/010,772, filed on Dec. 13, 2004, now Pat. No. 7,592,348.
- (60) Provisional application No. 60/529,535, filed on Dec. 15, 2003.
- (51) Int. Cl. C07D 265/02 (2006.01)C07D 233/88 (2006.01)(Continued)

(52) U.S. Cl.

CPC C07D 233/88 (2013.01); A61K 31/4168 (2013.01); A61K 31/4178 (2013.01); A61K 31/4184 (2013.01); A61K 31/4439 (2013.01); A61K 31/454 (2013.01); A61K 31/4545 (2013.01); A61K 31/4725 (2013.01); A61K 31/5377 (2013.01); A61K 31/655 (2013.01); A61K 45/06 (2013.01); C07D 233/46 (2013.01); C07D 233/70 (2013.01); C07D 235/02 (2013.01); C07D 239/22 (2013.01); CO7D 239/70 (2013.01); CO7D 271/07 (2013.01); C07D 273/00 (2013.01); C07D 295/15 (2013.01); C07D 401/04 (2013.01); C07D 401/06 (2013.01); C07D 401/08 (2013.01):

(Continued)

(58) Field of Classification Search

See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

8/1982 Ilvespaa et al. 4.342.764 A 5,883,096 A 3/1999 Lowe et al. (Continued)

FOREIGN PATENT DOCUMENTS

FP 0231919 3/1987 EP 0361341 4/1990

(Continued)

OTHER PUBLICATIONS

West, Anthony R., Solid State Chemistry and Its Applications, Wiley, New York, 1988, 358.*

(Continued)

Primary Examiner — Erich A Leeser (74) Attorney, Agent, or Firm — Keith D. MacMillan; John C. Todaro

(57)ABSTRACT

Disclosed are compounds of the formula I

or a stereoisomer, tautomer, or pharmaceutically acceptable salt or solvate thereof, wherein

W is a bond,
$$-C(=S)$$
—, $-S(O)$ —, $-S(O)_2$ —, $-C(=O)$ —, $-O$ —, $-C(R^6)(R^7)$ —, $-N(R^5)$ — or $-C(=N(R^5))$ —;

X is -O—, $-N(R^5)$ — or $-C(R^6)(R^7)$ —; provided that when X is —O—, U is not —O—, —S(O)—, $-S(O)_2$, -C(=O) or $-C(=NR^5)$;

U is a bond, -S(O)—, $-S(O)_2$ —, -C(O)—, -O—, $-P(O)(OR^{15})$, $-C(=NR^{5})$, $-(C(R^{6})(R^{7}))_{b}$ or $-N(R^5)$ —; wherein b is 1 or 2; provided that when W is -S(O), $-S(O)_2$, -O, or $-N(R^5)$, U is not -S(O)—, $-S(O)_2$ —, -O—, or $-N(R^5)$ —; provided that when X is $-N(R^5)$ — and W is -S(O)—, $-S(O)_2$ —, -O—, or $-N(R^5)$ —, then U is not a bond; and R¹, R², R³, R⁴, R⁵, R⁶, and R⁷ are as defined in the specification;

and pharmaceutical compositions comprising the compounds of formula I.

Also disclosed is the method of inhibiting aspartyl protease, and in particular, the methods of treating cardiovascular diseases, cognitive and neurodegenerative diseases, and the methods of inhibiting of Human Immunodeficiency Virus, plasmepins, cathepsin D and protozoal enzymes.

Also disclosed are methods of treating cognitive or neurodegenerative diseases using the compounds of formula I in combination with a cholinesterase inhibitor or a muscarinic antagonist.

10 Claims, No Drawings

US 9,416,108 B2Page 2

(51)	T + C1			450 012 D1 10/2	000 14 77'44 ' 1 4 1	
(51)	Int. Cl.	(200(-01)			002 McKittrick et al. 004 Cordell et al.	
	C07D 233/46 C07D 233/70	(2006.01)		183,070 B2 2/2	007 Cordell et al.	
	C07D 239/22	(2006.01)			008 Malamas et al.	
	C07D 239/22 C07D 239/70	(2006.01) (2006.01)			008 Malamas et al. 012 Zhu et al.	
	C07D 271/07	(2006.01)			005 Schultz et al.	
	C07D 273/00	(2006.01)			005 Malamas et al.	
	C07D 401/04	(2006.01)			005 Malamas et al. 006 Kinoshita et al.	
	C07D 401/04 C07D 401/08	(2006.01)			006 Zhu et al.	
	C07D 401/10	(2006.01)			OO7 Zhu et al.	
	C07D 401/10	(2006.01)			Malamas et al.	
	C07D 403/04	(2006.01)			007 Wu et al. 007 Berg et al.	
	C07D 403/06	(2006.01)			008 Zhu et al.	
	C07D 403/08	(2006.01)				
	C07D 403/10	(2006.01)		FOREIGN PA	ATENT DOCUMENTS	
	C07D 403/12	(2006.01)	ED	07/2054	2/1007	
	C07D 405/10	(2006.01)	EP EP	0763054 0969011	3/1997 1/2000	
	C07D 409/04	(2006.01)	EP	1942105	7/2006	
	C07D 409/10	(2006.01)	WO	WO89/03842	5/1989	
	C07D 409/14	(2006.01)	WO WO	WO90/04917 WO01/07440	5/1990 2/2001	
	C07D 413/10	(2006.01)	wo	WO02/02512	1/2002	
	C07D 413/12 C07D 417/06	(2006.01)	WO	WO02/02518	1/2002	
	A61K 31/4168	(2006.01) (2006.01)	WO WO	WO02/02520 WO02/12243	1/2002 2/2002	
	A61K 31/4178	(2006.01)	wo	WO02/074719	9/2002	
	A61K 31/4184	(2006.01)	WO	WO02/088101	11/2002	
	A61K 31/4439	(2006.01)	WO WO	WO 02096872	* 12/2002 C07D 20 4/2003	07/22
	A61K 31/454	(2006.01)	WO	WO03/031412 WO03/035613	5/2003	
	A61K 31/5377	(2006.01)	WO	WO03/106405	12/2003	
	A61K 45/06	(2006.01)	WO	WO2005/013020	2/2005	
	C07D 295/15	(2006.01)	WO WO	WO2005/014540 WO2005/016876	2/2005 2/2005	
	C07D 401/06	(2006.01)	WO	WO2005/058311	6/2005	
	C07D 405/06	(2006.01)	WO	WO2005/097767	10/2005	
	C07D 409/06	(2006.01)	WO WO	WO2005/103020 WO2005/103043	11/2005 11/2005	
	A61K 31/4545	(2006.01)	wo	WO2005/108391	11/2005	
	A61K 31/4725 A61K 31/655	(2006.01) (2006.01)	WO	WO2005/113484	12/2005	
	C07D 235/02	(2006.01)	WO WO	WO2006/002004 WO2006/009653	1/2006 1/2006	
	C07D 401/14	(2006.01)	wo	WO2006/009655	1/2006	
	C07D 405/14	(2006.01)	WO	WO2006/014762	2/2006	
	C07D 407/06	(2006.01)	WO WO	WO2006/014944 WO2006/017836	2/2006 2/2006	
(52)	U.S. Cl.		wo	WO2006/017844	2/2006	
		401/10 (2013.01); C07D 401/12	WO	WO2006/024932	3/2006	
		C07D 401/14 (2013.01); C07D	WO WO	WO2006/041404 WO2006/041405	4/2006 4/2006	
		(3.01); C07D 403/06 (2013.01);	WO	WO2006/044497	4/2006	
		403/08 (2013.01); C07D 403/10	WO	WO2006/065277	6/2006	
		C07D 403/12 (2013.01); C07D (3.01); C07D 405/10 (2013.01);	WO WO	WO2006/076284 WO2006/138192	7/2006 12/2006	
		405/14 (2013.01); C07D 407/06	WO	WO2006/138195	12/2006	
		C07D 409/04 (2013.01); C07D	WO	WO2006/138217	12/2006	
		[3.01); C07D 409/10 (2013.01);	WO WO	WO2006/138230 WO2006/138264	12/2006 12/2006	
		409/14 (2013.01); C07D 413/10	WO	WO2006/138265	12/2006	
	(2013.01);	C07D 413/12 (2013.01); C07D	WO	WO2006/138266	12/2006	
		417/06 (2013.01)	WO WO	WO2007/005366 WO2007/005404	1/2007 1/2007	
(50		CV. 1	WO	WO2007/016012	2/2007	
(56)	Refere	nces Cited	WO	WO2007/038271	4/2007	
	U.S. PATENT	DOCUMENTS	WO WO	WO2007/050721 WO2007/053506	5/2007 5/2007	
	5.5. IIIIEN		WO	WO2007/058580	5/2007	
		Lowe et al.	WO	WO2007/058582	5/2007	
	5,935,958 A 8/1999 5,952,349 A 9/1999		WO WO	WO2007/058583 WO2007/058601	5/2007 5/2007	
		Wang et al.	WO	WO2007/058602	5/2007	
	6,037,352 A 3/2000	Lowe et al.	WO	WO2007/073284	6/2007	
		Lowe et al. Kozlowski et al.	WO WO	WO2007/078813 WO2007/100536	7/2007 9/2007	
		Clader et al.	WO	WO2007/100330 WO2007/114771	10/2007	

(56) References Cited FOREIGN PATENT DOCUMENTS

WO	WO2007/145568	12/2007
WO	WO2007/145569	12/2007
WO	WO2007/145570	12/2007
WO	WO2007/145571	12/2007
WO	WO2007/146225	12/2007
WO	WO2007/149033	12/2007
WO	WO2008/022024	2/2008
WO	WO2008/063114	5/2008
WO	WO2008/073365	6/2008
WO	WO2008/073370	6/2008
WO	WO2008/076043	6/2008
WO	WO2008/076044	6/2008
WO	WO2008/076045	6/2008
WO	WO2008/076046	6/2008
WO	WO2008/092785	8/2008
WO	WO2008/103351	8/2008
WO	WO2008/115552	9/2008
WO	WO2008/118379	10/2008

OTHER PUBLICATIONS

Barton, H.J., et al., "On the Structure of some Substituted 4,6-Pyrimidinediones", Polish J. Chem., 1995, pp. 235-245, vol. 69. Berge, Stephen M., et al., "Pharmaceutical Salts", Journal of Pharmaceutical Sciences, 1977, pp. 1-19, vol. 66, No. 1.

Bingham, Ann L, et al., "Over one hundred solvates of sulfathiazole†", Chem. Commun., 2001, pp. 603-604.

Blennow Kaj, et al., CSF markers for incipient Azlheimer's disease, Lancet Neurology, vol. 2, No. 10, pp. 605-613 (2003).

Caira, Mino R., et al., "Preparation and Crystal Characterization of a Polymorph, a Monohydrate, and an Ethyl Acetate Solvate of the Antifungal Fluconazole", Journal of Pharmaceutical Sciences, 2004, pp. 601-611, vol. 93, No. 3.

Coldham, Iain, et al., "Synthesis of the ABC Ring System of Manzamine A", J. Org. Chem., 2002, pp. 6181-6187, vol. 67, No. 17. International Search Report (PCT/US2007/001024), mail date Aug. 21, 2007—8 pages for CV06385.

J.M.G. Fernandez, et al., "Syntheses and Spectral Properties of β -Iodoureas and 2-Amino-4,4-diphenyl-2-oxazolines", J. Heterocyclic Chem., 1991, pp. 777-780, vol. 28.

Fernandez, Garcia, et al., Syntheses of Beta-iodourea derivatives of carbohydrates and glycosylamino-oxazolines, Carbohydrate Research (1991), 216 21-32.

Garratt, Peter J., et al., "A Novel Synthesis of Dihydropyrimidines", J. Chem. Soc., Chem. Commun., 1987, pp. 568-569.

Gould, Philip L., "Salt selection for basic drugs", International Journal of Pharmaceutics, 1986, pp. 201-217, vol. 33.

Hanessian, Stephen, et al., The Power of Visual Imagery in Synthesis Planning. Stereocontrolled Approaches to CGP-60536B, a Potent Renin Inhibitor, J. Org. Chem., (1991) 56:4261-4274.

Hasegawa, Kiyoshi, et al., "The Synthesis of the 1,2,4-Thiadiazine-1,1-dioxides1)", Bulletin of the Chemical Society of Japan, 1972, pp. 1893-1896, vol. 45, No. 6.

Hussein, Ahmad Q., et al., "Synthesen von a-Bromisothiocyanaten" Chem Ber. 1979, pp. 1948-1955, vol. 112, (abstract included).

Kwon, Chul-Hoon, et al., "Facile Synthesis of Substituted 2-Iminohydantoins", Synthetic Communications, 1987, pp. 1677-1682, vol. 17, No. 14.

Lin, Peishan, et al., "Synthesis of Novel Guanidinoglycoside: 2-Glycosylamino 4,5-dihydro-6-pyrimidinone", J. Org. Chem., 2001, pp. 8243-8247, vol. 66, No. 24.

Merten, Rudolf, et al., "Notiz über eine neue Synthese von Derivaten des 1.4.2-Diazaphospholidins", Chem. Ber. 1969, pp. 2143-2145, vol. 102, (abstract not included).

Moloney, Gerard P., et al., "A Novel Series of 2,5-Substituted Tryptamine Derivatives as Vascular 5HT1B/1D Receptor Antagonists", J. Med. Chem., 1997, pp. 2347-2362, vol. 40, No. 15.

Mota, Jose Fuentes, et al., Synthesis of N-hetarylthiourea derivatives of carbohydrates, Journal of Carbohydrate Chemistry (1990), pp. 8243-8347, vol. 66, No. 24.

Na, Byoung-Kuk, et al., "Aspartic proteases of Plasmodium vivax are highly conserved in wild isolates", The Korean Journal of Parasitology, 2004, pp. 61-66, vol. 42, No. 2.

Oparil, Suzanne, et al., "The Renin-Angiotensin System (Second of Two Parts)", The New England Journal of Medicine, 1974, pp. 446-457, vol. 291, No. 9.

Page, et al., "A Convenient Preparation of Symmetrical and Unsymmetrical 1,2-Diketones: Application to Fluorinated Phenytoin Synthesis", Tetrahedron, 1992, pp. 7265-7274, vol. 48, No. 35.

Paik, Seunguk, et al., "a-Aminosulfonopeptides as Possible Functional Analogs of Penicillin; Evidence for their Extreme Instablility", Tetrahedron, 1996, pp. 5303-5318, vol. 52, No. 15.

Intellectual Search Report for PCT/US 2004/041700, mailed Jun. 1, 2005 (6 pages) for CN06136.

Intellectual Search Report for PCT/US 2005/020446, mailed Jul. 26, 2006 (6 pages) for CN06136-01.

Stahl, et al., Handbook of Pharmaceutical Salts: Properties, Selection, and Use, (Eds.), Int'l. Union of Pure and Applied Chemistry pp. 330, (2002).

Tariot, Pierre N., et al., "Memantine Treatment in Patients with Moderate to Severe Alzheimer Disease Already Receiving Donepezil: A Randomized Controlled Trial", JAMA, 2004, pp. 316-324, vol. 291, No. 3.

Talaty, Erach R., et al., "Preparation of Substituted Imidazolidinones and Hydantoins by Ring-Expansion of Aziridinones", Synlett, 1997, pp. 683-684. vol. 6.

ROC (Taiwan) Patent Application No. 093138776 Search Report—I page Translation.

Ugi, Ivar, Novel Methods of Preparative Organic Chemistry IV, "The a-Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions", Angew. Chem. Internat. Edit., 1962, pp. 8-21, vol. 1, No. 1.

Van Tonder, Elsa C., et al., "Preparation and Physicochemical Characterization of 5 Niclosamide Solvates and 1 Hemisolvate", AAPS PharmSciTech, 2004, pp. 1-10, vol. 5, No. 1, Article 12.

Varga, László, et al., "Solution-phase parallel synthesis of 4,6-diaryl-pyrimidine-2-ylamines and 2-amino-5,5-disubstituted-3,5-dihydro-imidazol-4-ones via a rearrangement", Tetrahedron, 2003, pp. 655-662, vol. 59.

Wang, Ying, et al., "Use of Polymer-Supported Pd Reagents for Rapid and Efficient Suzuki Reactions Using Microwave Heating", American Chemical Society, Organic Letters, 2004, pp. 2793-2796, vol. 6, No. 16.

Weber, W. et al., "First synthesis of the main metabolite of secobarbital", Pharmazie, 1998, pp. 771-775, vol. 53, No. 11.

Winkler, Jeffrey D., et al., Stereoselective Synthesis of the Tetracyclic Core of Manzamine via the Vinylogous Amide Photocycloaddition Cascade§, Tetrahedron, 1998, pp. 7045-7056, vol. 54.

Yu, Jin-Quan, et al., "Diverse Pathways for the Palladium(II)—Mediated Oxidation of Olefins by tert-Butylhydroperoxide", American Chemical Society, Organic Letters, 2002, pp. 2727-2730, vol. 4, No. 16.

Yusoff, Mashitah M., et al., "Ring-Expansion of an Aziridinone to a Hexahydrotriazine through the Agency of a Novel Rearrangement", Tetrahedron Letters, 1996, pp. 8695-8698, vol. 37, No. 48.

Abstract—Caccamo A., et al. M1 agonists as a potential disease-modifying therapy for Alzheimer's disease. Abstract, J Mol. Neurosci. 2003, 20 (3).

Abstract—Caccamo A., et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Abstract, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.

Abstract—Fisher A., et al. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer's disease; implications in future therapy. Neuron, 2006, pp. 671-682,vol. 49, No. 5 (Abstract).

Jacquier, et al., Protonation and Quaternization of 3-amino-2-isoxazolines, Bulletin de la Societe Chimique de France, 7-8, Pt. 2, 1651-5 (1974).

* cited by examiner

HETEROCYCLIC ASPARTYL PROTEASE INHIBITORS

This application claims the benefit of priority of U.S. Ser. No. 60/529.535, filed Dec. 15, 2003.

FIELD OF THE INVENTION

This invention relates to heterocyclic aspartyl protease inhibitors, pharmaceutical compositions comprising said ¹⁰ compounds, their use in the treatment of cardiovascular diseases, cognitive and neurodegenerative diseases, and their use as inhibitors of the Human Immunodeficiency Virus, plasmepsins, cathepsin D and protozoal enzymes.

BACKGROUND

Eight human aspartic proteases of the A1 (pepsin-like) family are known to date: pepsin A and C, renin, BACE, BACE 2, Napsin A, cathepsin D in pathological conditions. 20

The role of renin-angiotensin system (RAS) in regulation of blood pressure and fluid electrolyte has been well established (Oparil, S, et al. N Engl J Med 1974; 291:381-401/446-57). The octapeptide Angiotensin-II, a potent vasoconstrictor and stimulator for release of adrenal aldosterone, was pro- 25 cessed from the precursor decapeptide Angiotensin-I, which in turn was processed from angiotensinogen by the renin enzyme. Angiotensin-II was also found to play roles in vascular smooth muscle cell growth, inflammation, reactive oxygen species generation and thrombosis, influence atherogen- 30 esis and vascular damage. Clinically, the benefit of interruption of the generation of angiotensin-II through antagonism of conversion of angiotensin-I has been well known and there are a number of ACE inhibitor drugs on the market. The blockade of the earlier conversion of angiotensi- 35 nogen to angiotensin-I, i.e. the inhibition of renin enzyme, is expected to have similar but not identical effects. Since renin is an aspartyl protease whose only natural substrate is angiotensinogen, it is believed that there would be less frequent adverse effect for controlling high blood pressure and related 40 symptoms regulated by angiotensin-II through its inhibition.

Another protease, Cathespin-D, is involved in lysosomal biogenesis and protein targeting, and may also be involved in antigen processing and presentation of peptide fragments. It has been linked to numerous diseases including, Alzheimers, 45 disease, connective tissue disease, muscular dystrophy and breast cancer.

Alzheimer's disease (AD) is a progressive neurodegenerative disease that is ultimately fatal. Disease progression is associated with gradual loss of cognitive function related to 50 memory, reasoning, orientation and judgment. Behavioral changes including confusion, depression and aggression also manifest as the disease progresses. The cognitive and behavioral dysfunction is believed to result from altered neuronal function and neuronal loss in the hippocampus and cerebral 55 cortex. The currently available AD treatments are palliative, and while they ameliorate the cognitive and behavioral disorders, they do not prevent disease progression. Therefore there is an unmet medical need for AD treatments that halt disease progression.

Pathological hallmarks of AD are the deposition of extracellular β -amyloid (A β) plaques and intracellular neurofibrillary tangles comprised of abnormally phosphorylated protein tau. Individuals with AD exhibit characteristic A β deposits, in brain regions known to be important for memory and cognition. It is believed that A β is the fundamental causative agent of neuronal cell loss and dysfunction which is associated with

2

cognitive and behavioral decline. Amyloid plaques consist predominantly of A β peptides comprised of 40-42 amino acid residues, which are derived from processing of amyloid precursor protein (APP). APP is processed by multiple distinct protease activities. A β peptides result from the cleavage of APP by β -secretase at the position corresponding to the N-terminus of A β , and at the C-terminus by γ -secretase activity. APP is also cleaved by α -secretase activity resulting in the secreted, non-amyloidogenic fragment known as soluble APP

An aspartyl protease known as BACE-1 has been identified as the β -secretase activity responsible for cleavage of APP at the position corresponding to the N-terminus of $A\beta$ peptides.

Accumulated biochemical and genetic evidence supports a central role of $A\beta$ in the etiology of AD. For example, $A\beta$ has been shown to be toxic to neuronal cells in vitro and when injected into rodent brains. Furthermore inherited forms of early-onset AD are known in which well-defined mutations of APP or the presenilins are present. These mutations enhance the production of $A\beta$ and are considered causative of AD.

Since $A\beta$ peptides are formed as a result β -secretase activity, inhibition of BACE-1 should inhibit formation of $A\beta$ peptides. Thus inhibition of BACE-1 is a therapeutic approach to the treatment of AD and other cognitive and neurodegenerative diseases caused by $A\beta$ plaque deposition.

Human immunodeficiency virus (HIV), is the causative agent of acquired immune deficiency syndrome (AIDS). It has been clinically demonstrated that compounds such as indinavir, ritonavir and saquinavir which are inhibitors of the HIV aspartyl protease result in lowering of viral load. As such, the compounds described herein would be expected to be useful for the treatment of AIDS. Traditionally, a major target for researchers has been HIV-1 protease, an aspartyl protease related to renin.

In addition, Human T-cell leukemia virus type I (HTLV-I) is a human retrovirus that has been clinically associated with adult T-cell leukemia and other chronic diseases. Like other retroviruses, HTLV-I requires an aspartyl protease to process viral precursor proteins, which produce mature virions. This makes the protease an attractive target for inhibitor design. Moore, et al. Purification of HTLV-I Protease and Synthesis of Inhibitors for the treatment of HTLV-I Infection 55th Southeast Regional Meeting of the American Chemical Society, Atlanta, Ga., US Nov. 16-19, 2003 (2003), 1073. CODEN; 69EUCH Conference, AN 2004:137641 CAPLUS.

Plasmepsins are essential aspartyl protease enzymes of the malarial parasite. Compounds for the inhibition of aspartyl proteases plasmepsins, particularly I, II, IV and HAP, are in development for the treatment of malaria. Freire, et al. WO 2002074719. Na Byoung-Kuk, et al. Aspartic proteases of *Plasmodium vivax* are highly conserved in wild isolates Korean Journal of Prasitology (2004 June), 42(2) 61-6. Journal code: 9435800 Furthermore, compounds used to target aspartyl proteases plasmepsins (e.g. I, II, IV and HAP), have been used to kill malarial parasites, thus treating patients thus afflicted. Certain compounds also exhibited inhibitory activity against Cathespin D.

SUMMARY OF THE INVENTION

The present invention relates to compounds having the structural formula I

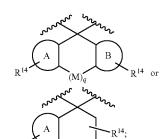
10

3

$$\begin{array}{c|c}
 & I \\
 & \\
X \\
 & \\
R^3 \\
 & \\
 & \\
R^4
\end{array}$$

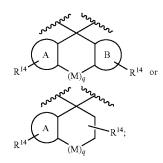
or a stereoisomer, tautomer, or pharmaceutically acceptable salt or solvate thereof, wherein

W is a bond,
$$-C(=S)$$
—, $-S(O)$ —, $-S(O)_2$ —, 15
 $-C(=O)$ —, $-O$ —, $-C(R^6)(R^7)$ —, $-N(R^5)$ — or $-C(=N(R^5))$ —:


 $X \text{ is } -O-, -N(R^5)- \text{ or } -C(R^6)(R^7)-; \text{ provided that }$ when $X \text{ is } -O-, U \text{ is not } -O-, -S(O)-, -S(O)_2-, _{20} -C(=O)- \text{ or } -C(=NR^5)-;$

U is a bond, -S(O)—, $-S(O)_2$ —, -C(O)—, -O—, $-P(O)(OR^{15})$ —, $-C(=NR^5)$ —, $-(C(R^6)(R^7))_b$ — or $-N(R^5)$ —; wherein b is 1 or 2; provided that when W is -S(O)—, $-S(O)_2$ —, -O—, or $-N(R^5)$ —, U is not -S(O)—, $-S(O)_2$ —, -O—, or $-N(R^5)$ —; provided that when X is $-N(R^5)$ — and W is -S(O)—, $-S(O)_2$ —, -O—, or $-N(R^5)$ —; then U is not a bond;

 $R^1,\,R^2$ and R^5 are independently selected from the group $_{30}$ consisting of H, alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, arylcycloalkyl, —OR $^{15},\,$ —CN, —C(O)R $^8,\,$ —C(O)OR $^9,\,$ —S(O)R $^{10},\,$ —S(O)_2R $^{10},\,$ —C(O)N (R 11)(R 12), —S(O)N(R 11)(R 12), —S(O)_2N(R 11)(R 12), 35 —NO_2, —N=C(R 8)2 and —N(R 8)2, provided that R 1 and R 5 are not both selected from —NO_2, —N=C(R 8)2 and —N(R 8)2;


R³, R⁴, R⁶ and R⁷ are independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CH₂—O—Si(R⁹)(R¹⁰) (R^{19}) ,—SH,—CN,— OR^9 ,— $C(O)R^8$,— $C(O)OR^9$,—C(O) $N(R^{11})(R^{12}), -SR^{19}, -S(O)N(R^{11})(R^{12}), -S(O)_2N(R^{11})$ 45 (R^{12}) , $-N(R^{11})(R^{12})$, $-N(R^{11})\hat{C}(O)\hat{R}^8$, $-N(R^{11})\hat{S}(O)\hat{R}^{10}$, $-N(R^{11})C(O)N(R^{12})(R^{13}),$ -N(R¹¹)C(O)OR⁹ $--C(=NOH)R^8$; provided that when U is --O- or $-N(R^5)$ —, then R^3 , R^4 , R^6 and R^7 are not halo, -SH, $-OR^9$, $-SR^{19}$, $-S(O)N(R^{11})(R^{12})$, $-S(O)_2N(R^{11})(R^{12})$, 50 $-N(R^{11})(R^{12}),$ $-N(R^{11})C(O)R^{8}, -N(R^{11})S(O)R^{10}$ $-N(R^{11})C(O)N(R^{12})(R^{13})$, or $-N(R^{11})C(O)OR^9$; provided that when W is -O— or $-N(R^5)$ —, then R^3 and R^4 are not halo, -SH, $-OR^9$, $-SR^{19}$, $-S(O)N(R^{11})(R^{12})$, $-S(O)_2N$ $(R^{11})(R^{12})$, $-N(R^{11})(R^{12})$, $-N(R^{11})C(O)R^8$, $-N(R^{11})S$ $(O)R^{10}$, $-N(R^{11})C(O)N(R^{12})(R^{13})$, or $-N(R^{11})C(O)OR^9$; and provided that when X is —N(R⁵)—, W is —C(O)— and U is a bond, R³, R⁴, R⁶ and R⁷ are not halo, —CN, —SH, —OR⁹, —SR¹⁹, —S(O)N(R¹¹)(R¹²) or —S(O)₂N(R¹¹) (R^{12}) ; or R^3 , R^4 , R^6 and R^7 , together with the carbon to which they are attached, form a 3-7 membered cycloalkyl group optionally substituted by R¹⁴ or a 3-7 membered cycloalkylether optionally substituted by R14

or R^3 and R^4 or R^6 and R^7 together with the carbon to which $\,\,$ 65 they are attached, are combined to form multicyclic groups such as

wherein M is —CH₂—, S, —N(R¹⁹)— or O, A and B are independently aryl or heteroaryl and q is 0, 1 or 2 provided that when q is 2, one M must be a carbon atom and when q is 2, M is optionally a double bond; and with the proviso that when R³, R⁴, R⁶ and R⁷ form said multicyclic groups

4

then adjacent R³ and R⁴ or R⁶ and R⁷ groups cannot be combined to form said multicyclic groups;

 R^6 is independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, $-OR^{15}, -N(R^{15})$ $(R^{16}), -N(R^{15})C(O)R^{16}, -N(R^{15})S(O)R^{16}, -N(R^{15})S(O)_2R^{16}, -N(R^{15})S(O)_2N(R^{16})(R^{17}), -N(R^{15})S(O)N(R^{16})(R^{17}), -N(R^{15})C(O)OR^{16};$

R⁹ is independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl and heteroarylalkyl;

 $\mathring{R^{10}}$ is independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, cycloalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl and $-N(R^{15})(R^{16})$;

 R^{11}, R^{12} and R^{13} are independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, $-C(O)R^8, -C(O)OR^9, -S(O)R^{10}, -S(O)_2R^{10}, -C(O)N(R^{15})(R^{16}), -S(O)_2N(R^{15})(R^{16})$ and -CN;

 R^{14} is 1-5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkyl, heterocycloalkylalkyl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CN, — OR^{15} , — $CO)R^{15}$, — $CO)OR^{15}$, — $CO)R^{15}$, —COO, —CO, —CO

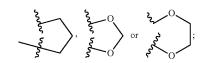
 $R^{15}, R^{16} \, {\rm and} \, R^{17} \, {\rm are} \, {\rm independently} \, {\rm selected} \, {\rm from} \, {\rm the} \, {\rm group} \, {\rm consisting} \, {\rm of} \, H, \, {\rm alkyl}, \, {\rm alkenyl}, \, {\rm alkynyl}, \, {\rm cycloalkyl}, \, {\rm cycloalkyl}, \, {\rm cycloalkyl}, \, {\rm heterocycloalkyl}, \, {\rm arylalkyl}, \, {\rm heterocycloalkyl}, \, {\rm arylcycloalkyl}, \, {\rm arylcycloalkyl}, \, {\rm arylheterocycloalkyl}, \, {\rm R}^{18} - {\rm cycloalkyl}, \, {\rm R}^{18} - {\rm cycloalkyl}, \, {\rm R}^{18} - {\rm cycloalkyl}, \, {\rm R}^{18} - {\rm heterocycloalkyl}, \, {\rm R}^{18} - {\rm heterocycloalkyl}, \, {\rm R}^{18} - {\rm heterocycloalkyl}, \, {\rm R}^{18} - {\rm arylalkyl}, \, {\rm R}^{18} - {\rm heterocycloalkyl}, \, {\rm R}^{18} - {\rm heterocycloalkyl}, \, {\rm R}^{18} - {\rm heterocycloalkyl}, \, {\rm R}^{18} - {\rm arylalkyl}, \, {\rm R}^{18} - {\rm heterocycloalkyl}, \, {\rm R}^{18} - {\rm heterocycloalkyl$

 R^{15} , R^{16} and R^{17} are

$$\left(\begin{array}{c} \mathbb{R}^{23} \\ \mathbb{N} \\ \mathbb{$$

wherein R^{23} numbers 0 to 5 substituents, m is 0 to 6 and n is 1 to 5.

R¹⁸ is 1-5 substituents independently selected from the group consisting of alkyl, alkenyl, aryl, arylalkyl, arylalkenyl, arylalkynyl, -NO₂, halo, heteroaryl, HO-alkyoxyalkyl, $-CF_3$, -CN, alkyl--CN, $-C(O)R^{19}$, -C(O)OH, $-C(O)OR^{19}$, $-C(O)NHR^{20}$, $-C(O)NH_2$, $-C(O)NH_2$ $\begin{array}{lll} \text{(alkyl)}_2, & \text{-C(O)N(alkyl)(aryl)}, & \text{-C(O)N(alkyl)(heteroaryl)}, \\ -\text{SR}^{19}, & -\text{S(O)}_2\text{R}^{20}, & -\text{S(O)NH}_2, & -\text{S(O)NH(alkyl)}, \\ -\text{S(O)N(alkyl)(alkyl)}, & -\text{S(O)NH(aryl)}, & -\text{S(O)}_2\text{NH}_2, \end{array}$ $-S(O)_2NH_2$, 30 $-S(O)_2NHR^{19}$, $-S(O)_2NH$ (heterocycloalkyl), $-S(O)_2N$ $(alkyl)_2$, $-S(O)_2N(alkyl)(aryl)$, $-OCF_3$, -OH, $-OR^{20}$ -O-heterocycloalkyl, -O-cycloalkylalkyl, -O-heterocycloalkylalkyl, —NH₂, —NHR²⁰, —N(alkyl)₂, —N(arylalkyl)₂, —N(arylalkyl)-(heteroarylalkyl), —NHC(O)R²⁰ -NHC(O)NH₂, -NHC(O)NH(alkyl), -NHC(O)N(alkyl) (alkyl), —N(alkyl)C(O)NH(alkyl), —N(alkyl)C(O)N(alkyl) (alkyl), $-NHS(O)_2R^{20}$, $-NHS(O)_2NH(alkyl)$, -N(alkyl)S(O)₂NH(alkyl) (O)₂N(alkyl)(alkyl), -N(alkyl)S(O)2N(alkyl)(alkyl);


or two ${\bf R}^{18}$ moieties on adjacent carbons can be linked together to form

R¹⁹ is alkyl, cycloalkyl, aryl, arylalkyl or heteroarylalkyl; 50 R²⁰ is alkyl, cycloalkyl, aryl, halo substituted aryl, arylalkyl, heteroaryl or heteroarylalkyl;

and wherein each of the alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroarylalkyl, alkenyl and alkynyl groups in \mathbb{R}^1 , 55 \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 , \mathbb{R}^8 , \mathbb{R}^9 , \mathbb{R}^{10} , \mathbb{R}^{11} , \mathbb{R}^{12} , \mathbb{R}^{13} and \mathbb{R}^{14} are independently unsubstituted or substituted by 1 to 5 \mathbb{R}^{21} groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, 60 heteroaryl, heteroarylalkyl, halo, $-\mathbb{C}\mathbb{N}$, $-\mathbb{O}\mathbb{R}^{15}$, $-\mathbb{C}(\mathbb{O})\mathbb{N}$ (\mathbb{R}^{15}), $-\mathbb{C}(\mathbb{O})\mathbb{N}$ ($\mathbb{C}(\mathbb{O})\mathbb{N}$), $-\mathbb{C}(\mathbb{C}(\mathbb{O})\mathbb{N}$ ($\mathbb{C}(\mathbb{O})\mathbb{N}$), $-\mathbb{C}(\mathbb{C}(\mathbb{O})\mathbb{N}$), $-\mathbb{C}(\mathbb{C}(\mathbb{O})\mathbb{N}$), $-\mathbb{C}(\mathbb{C}(\mathbb{O})\mathbb{N}$), $-\mathbb{C}(\mathbb{C}(\mathbb{C})\mathbb{N}$), $-\mathbb{C}(\mathbb{C}(\mathbb{C})\mathbb{N})$, $-\mathbb{C}(\mathbb{C}(\mathbb{C})\mathbb{N})$, -

 $--CH_2--N(R^{15})S(O)_2R^{16},$ $-N(R^{15})S(O)_2N(R^{16})(R^{17}),$ $-N(R^{15})S(O)N(R^{16})(R^{17}),$ $-N(R^{15})C(O)N(R^{16})(R^{17}),$ $-CH_2-N(R^{15})C(O)N(R^{16})(R^{17}),$ $-N(R^{15})C(O)OR^{16}$, $-CH_2-N(R^{15})C(O)OR^{16}$, $-S(O)R^{15}$, $=NOR^{15}$, $-N_3$, $-NO_2$ and $-S(O)_2R^{15}$; and wherein each of the alkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkenyl and alkynyl groups in R²¹ are independently unsubstituted or substituted by 1 to 5 R²² groups independently selected from the group consisting of alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, heteroaryl, halo, —CF₃, $-CN, -OR^{15}, -C(O)R^{15}, -C(O)OR^{15}, -alkyl-C(O)OR^{15}, C(O)N(R^{15})(R^{16}), -SR^{15}, -S(O)N(R^{15})(R^{16}), -S(O)_2N$ $R^{15}(R^{16}), \quad -C(=NOR^{15})R^{16}, \quad -P(O)(OR^{15})(OR^{16}), \\ -N(R^{15})(R^{16}), \quad -alkyl-N(R^{15})(R^{16}), \quad -N(R^{15})C(O)R^{16},$ $-S(O)R^{15}$ and $-S(O)_2R^{15}$;

or two R^{21} or two $R^{2\tilde{2}}$ moieties on adjacent carbons can be linked together to form

and when R^{21} or R^{22} are selected from the group consisting of $-C(=NOR^{15})R^{16}$, $-N(R^{15})C(O)R^{16}$, $-CH_2-N(R^{15})$ $C(O)R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-CH_2-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2N(R^{16})(R^{17})$, $-N(R^{15})S(O)_2N(R^{16})(R^{17})$, $-N(R^{15})S(O)_2N(R^{16})(R^{17})$, $-CH_2-N(R^{15})C(O)N(R^{16})(R^{17})$, $-N(R^{15})C(O)OR^{16}$ and $-CH_2-N(R^{15})C(O)OR^{16}$, R^{15} and R^{16} together can be a C_2 to C_4 chain wherein, optionally, one, two or three ring carbons can be replaced by -C(O)- or -N(H)- and R^{15} and R^{16} , together with the atoms to which they are attached, form a 5 to 7 membered ring, optionally substituted by R^{23} ;

R²³ is 1 to 5 groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CN, —OR²⁴, —C(O)R²⁴, —C(O)CR²⁴, —C(O)N(R²⁴)(R²⁵), —SR²⁴, —S(O)N(R²⁴)(R²⁵), —S(O)₂N(R²⁴)(R²⁵), —C(=NOR²⁴)R²⁵, —P(O)(OR²⁴)(OR²⁵), —N(R²⁴)R²⁵), CO(DR²⁵, —N(R²⁴)S(O)₂R²⁵, —N(R²⁴)S(O)₂R²⁵, —N(R²⁴)S(O)₂R²⁵, —N(R²⁴)S(O)₂R²⁵, —N(R²⁴)S(O)₂R²⁵, —N(R²⁴)S(O)₂N(R²⁵)(R²⁶), —N(R²⁴)S(O)₂N(R²⁵)(R²⁶), —N(R²⁴)S(O)₂N(R²⁵)(R²⁶), —N(R²⁴)C(O)N(R²⁵)(R²⁶), —N(R²⁴)C(O)OR²⁵, —CH₂—N(R²⁴)C(O)OR²⁵, —CH₂—N(R²⁴)C(O)OR²⁵, —S(O)R²⁴ and —S(O)₂R²⁴; and wherein each of the alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkenyl and alkynyl groups in R²³ are independently unsubstituted or substituted by 1 to 5 R²¹ groups independently alkenyl and alkynyl groups in R²³ are independently unsubstituted or substituted by 1 to 5 R²¹ groups independently (Selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, halo, —CF₃, —CN, —OR²⁴, —C(O)R²⁴, —C(O)OR²⁴, alkyl-C(O)OR²⁴, C(O)N(R²⁴)(R²⁵), —S(C)=NOR²⁴)R²⁵, —P(O)(OR²⁴)(OR²⁵), —S(O)₂N(R²⁴)(R²⁵), —C(=NOR²⁴)R²⁵, —P(O)(OR²⁴)(OR²⁵), —N(R²⁴)CO)R²⁵, —CH₂—N(R²⁴)CO)R²⁵, —N(R²⁴)S(O)₂R²⁵, —CH₂—N(R²⁴)S(O)₂R²⁵, —N(R²⁴)S(O)₂R²⁵, —N(R²⁴)S(O)₂R²⁵, —CH₂—N(R²⁴)S(O)₂R²⁵, —N(R²⁴)S(O)₂R²⁵, —N(R²⁴)S(O)

 $\begin{array}{l} N(R^{25})(R^{26}), -N(R^{24})C(O)N(R^{25})(R^{26}), -CH_2-N(R^{24})C\\ (O)N(R^{25})(R^{26}), -N(R^{24})C(O)OR^{25}, -CH_2-N(R^{24})C(O)\\ OR^{25}, -S(O)R^{24} \text{ and } -S(O)_2R^{24}; \end{array}$

 R^{24}, R^{25} and R^{26} are independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, aryleycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylcycloalkyl, R^{27} -alkyl, R^{27} -cycloalkyl, R^{27} -heterocycloalkyl, R^{27} -heterocycloalkyl, R^{27} -heteroarylalkyl, R^{27} -heteroarylalkyl, R^{27} -heteroarylalkyl, R^{27} -heteroarylalkyl;

R²⁷ is 1-5 substituents independently selected from the group consisting of alkyl, aryl, arylalkyl, -NO2, halo, $-CF_3$, -CN, alkyl-CN, $-C(O)R^{28}$, -C(O)OH, -C(O)OR²⁸, —C(O)NHR²⁹, —C(O)N(alkyl)₂, —C(O)N(alkyl)₁₅ (aryl), -C(O)N(alkyl)(heteroaryl), $-SR^{28}$, $-S(O)_2R^{29}$, —S(O)NH(alkyl), —S(O)N(alkyl)(alkyl), $-S(O)NH(aryl), -S(O)_2NH_2, -S(O)_2NHR^{28}, -S(O)_2NH$ (aryl), —S(O)₂NH(heterocycloalkyl), —S(O)₂N(alkyl)₂, $-S(O)_2N(alkyl)(aryl)$, -OH, $-OR^{29}$, -O-heterocy- 20 cloalkyl, —O-cycloalkylalkyl, —O-heterocycloalkylalkyl, $--NH_2$, $--NHR^{29}$, $--N(alkyl)_2$, $--N(arylalkyl)_2$, --N(aryla- $-NHC(O)R^{29}$, $-NHC(O)NH_2$, lkyl)(heteroarylalkyl), -NHC(O)NH(alkyl), —NHC(O)N(alkyl)(alkyl), —N(alkyl)C(O)NH(alkyl), —N(alkyl)C(O)N(alkyl)(alkyl), 25 -NHS(O)₂R²⁹, -NHS(O)₂NH(alkyl), -NHS(O)₂N (alkyl)(alkyl), -N(alkyl)S(O)₂NH(alkyl) and -N(alkyl)S (O)₂N(alkyl)(alkyl);

R²⁸ is alkyl, cycloalkyl, arylalkyl or heteroarylalkyl; and R²⁸ is alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl or het- 30 eroarylalkyl;

provided that when W is —C(O)— and U is a bond, R^1 is not optionally substituted phenyl, and that when U is —C(O)— and W is a bond, R^5 is not optionally substituted phenyl;

provided that neither R^1 nor R^5 is —C(O)-alkyl-azetidinone or alkyl di-substituted with (—COOR¹⁵ or —C(O)N (R^{15})(R^{16})) and (—N(R^{15})(R^{18}), —N(R^{15})C(O)R¹⁶, —N(R^{15})S(O) R^{16} , —N(R^{15})S(O)N(R^{16})(R^{17}), —N(R^{15})C(O)N 40 (R^{16})(R^{17}), or —N(R^{15})C(O)OR¹⁶);

provided that when R^1 is methyl, X is $-N(R^5)$, R^2 is H, W is -C(O)— and U is a bond, (R^3, R^4) is not (H, H), (phenyl, phenyl), (H, phenyl), (benzyl, H), (benzyl, phenyl), (i-butyl, H), (i-butyl, phenyl), (OH-phenyl, phenyl), (halophenyl, phenyl), or $(CH_3O$ -phenyl, NO_2 -phenyl); and when W is a bond and U is -C(O), (R^3, R^4) is not (H, H), (phenyl, phenyl), (H, phenyl), (benzyl, H), (benzyl, phenyl), (i-butyl, H), (i-butyl, phenyl), (OH-phenyl, phenyl), (halophenyl, phenyl), or $(CH_3O$ -phenyl, NO_2 -phenyl);

provided that when X is $-N(R^5)$ —, R^1 and R^5 are each H, W is -C(O)— and U is a bond, (R^3, R^4) is not (optionally substituted phenyl, optionally substituted benzyl), (optionally substituted phenyl, heteroarylalkyl) or (heteroaryl, heteroarylalkyl);

provided that when U is a bond, W is —C(O)—, and R^3 and R^4 form a ring with the carbon to which they are attached, R^1 is not 2-CF₃-3-CN-phenyl;

provided that when X is $-N(R^5)$ —, U is -O— and W is a bond or $-C(R^6)(R^7)$ —, (R^3,R^4) is not (H, -NHC(O)-60 alkyl-heteroaryl) or (H, alkyl-NHC(O)-alkyl-heteroaryl); and

provided that when X is $-N(R^5)$ —, R^1 and R^5 are not -alkylaryl-aryl-SO₂— $N(R^{15})(R^{16})$ wherein R^{15} is H and R^{16} is heteroaryl:

provided that when R^1 is R^{21} -aryl or R^{21} -arylalkyl, wherein R^{21} is $-OCF_3$, $-S(O)CF_3$, $-S(O)_2CF_3$, $-S(O)_3$

alkyl, — $S(O)_2$ alkyl, — $S(O)_2$ CHF $_2$, — $S(O)_2$ CF $_2$ CF $_3$, —OCF 2 CHF $_2$, —OCHF $_2$, —OCH $_2$ CF $_3$, — SF_5 or — $S(O)_2$ NR 15 R 16 :

wherein R¹⁵ and R¹⁶ are independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl, R¹⁸-alkyl, R¹⁸-cycloalkyl, R¹⁸-heterocycloalkyl, R¹⁸-aryl and R¹⁸-heteroaryl; U is a bond or —CH₂; and X is —N(R⁵)—; then R⁵ is H;

provided that when U is a bond,

R³ and R⁴ are alkyl,

where R²¹ is halo, —CN, alkyl, alkoxy, haloalkyl or haloalkoxy, or R³ and R⁴, together with the carbon to which they are attached, form a 3-7 membered cycloalkyl group,

and R1 is

$$R^{21a}$$
, R^{21a} , R^{22} , R^{22} , R^{21a} or R^{21a}

where a is 0 to 6 and R²² is alkyl, alkoxy, halo, —CN, —OH, —NO₂ or haloalkyl;

then R^{21a} is not H, $-C(O)_2R^{15}$, wherein R^{15} is selected from the group consisting of alkyl, cycloalkyl and alkyl substituted with phenyl, alkyl or alkyl- R^{22} , wherein R^{22} is selected from the group consisting of

phenyl,

phenyl substituted with alkyl. and

wherein R²² is selected from the group consisting of H, methoxy, nitro, oxo, —OH, halo and alkyl,

In another aspect, the invention relates to a pharmaceutical composition comprising at least one compound of formula I and a pharmaceutically acceptable carrier.

In another aspect, the invention comprises the method of inhibiting aspartyl protease comprising administering at least one compound of formula I to a patient in need of such treatment.

More specifically, the invention comprises: the method of treating a cardiovascular disease such as hypertension, renal failure, or a disease modulated by renin inhibition; the method of treating Human Immunodeficiency Virus; the method of treating a cognitive or neurodegenerative disease 35 such as Alzheimer's Disease; the method of inhibiting plasmepins I and II for treatment of malaria; the method of inhibiting Cathepsin D for the treatment of Alzheimer's Disease, breast cancer, and ovarian cancer; and the method of inhibiting protozoal enzymes, for example inhibition of plasmo- 40 dium falciparnum, for the treatment of fungal infections. Said method of treatment comprise administering at least one compound of formula I to a patient in need of such treatment. In particular, the invention comprises the method of treating Alzheimer's disease comprising administering at least one compound of formula I to a patient in need of such treatment.

In another aspect, the invention comprises the method of treating Alzheimer's disease comprising administering to a patient I need of such treatment a combination of at least one compound of formula I and a cholinesterase inhibitor or a muscarinic antagonist.

In a final aspect, the invention relates to a kit comprising in separate containers in a single package pharmaceutical compositions for use in combination, in which one container comprises a compound of formula I in a pharmaceutically acceptable carrier and a second container comprises a cholinesterase inhibitor or a muscarinic antagonist in a pharmaceutically acceptable carrier, the combined quantities being an effective amount to treat a cognitive disease or neurodegenerative disease such as Alzheimer's disease.

DETAILED DESCRIPTION

Compounds of formula I wherein X, W and U are as 65 defined above include the following independently preferred structures:

$$\begin{array}{c}
R^{7} \\
R^{7} \\
R^{3} \\
R^{4}
\end{array}$$
IE

$$\begin{array}{c}
R^7 \\
R^7 \\
R^4
\end{array}$$
R1

$$\begin{array}{c|c}
R^2 \\
N \\
N \\
N \\
R^3
\end{array}$$

-continued

$$R^{7} \xrightarrow{R^{6}} N \xrightarrow{N} R^{1}$$

$$U \xrightarrow{R^{3}} R^{3}$$

$$R^{7} \xrightarrow{R^{6}} R^{3}$$

In compounds of formulas IA to IF, U is preferably a bond or $-C(R^6)(R^7)$ —. In compounds of formula IG and IH, U is preferably -C(O)—.

It will be understood that since the definition of R^1 is the same as the definition of R^5 , when X is $-N(R^5)$ —, compounds of formula I wherein W is a bond and U is a bond, -S(O)—, -S(O)—, -C(O)—, -O—, $-C(R^6)(R^7)$ — or $-N(R^5)$ — are equivalent to compounds of formula I wherein U is a bond and W is a bond, -S(O)—, -S(O)2—, -C(O)—, -O—, $-C(R^6)(R^7)$ — or $-N(R^5)$ —.

More preferred compounds of the invention are those of formula IB wherein U is a bond or those of formula IB wherein U is $-C(R^6)(R^7)$ —.

Another group of preferred compounds of formula I is that wherein \mathbb{R}^2 is H.

 $R^3,\,R^4,\,R^6$ and R^7 are preferably selected from the group consisting of alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, halo, $-CH_2-O-Si(R^9)(R^{10})(R^{19}),-SH,$ heteroarylalkyl, halo, $-CH_2-O-Si(R^9)(R^{10})(R^{19}),-SH,$ $-CN,\,-OR^9,\,-C(O)\,R^8,\,-C(O)OR^9,\,-C(O)N(R^{11})(R^{12}),\,-SR^{19},\,-S(O)N(R^{11})(R^{12}),\,-S(O)_2N(R^{11})(R^{12}),$ $-N(R^{11})(R^{12}),\,-N(R^{11})C(O)R^8,\,-N(R^{11})S(O)R^{10},$ $-N(R^{11})C(O)N(R^{12})(R^{13}),\,-N(R^{11})C(O)OR^9$ and $-C(=NOH)R^8.$

 $\rm R^3,\,R^4,\,R^6$ and $\rm R^7$ are preferably selected from the group consisting of aryl, heteroaryl, heteroarylalkyl, arylalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkylalkyl, alkyl and cycloalkylalkyl.

In a group of preferred compounds

U is a bond or —C(O)—;

W is a bond or --C(O)—;

X is
$$-N(R^5)$$
—;

 R^1 is H, alkyl, R^{21} -alkyl, arylalkyl, R^{21} -arylalkyl, cycloalkylalkyl, R^{21} -cycloalkylalkyl, heterocycloalkylalkyl or R^{21} -heterocycloalkylalkyl,

 R^2 is H;

R³ is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R²¹-alkyl, R²¹-cycloalkylalkyl, R²¹-cycloalkyl, R²¹-aryl or R²¹-arylalkyl;

 R^4 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, $^{55}\,R^{21}$ -alkyl, R^{21} -cycloalkylalkyl, R^{21} -cycloalkyl, R^{21} -aryl or R^{21} -arylalkyl;

 R^5 is H, alkyl, R^{21} -alkyl, arylalkyl, R^{21} -arylalkyl, cycloalkylalkyl, R^{21} -cycloalkylalkyl, heterocycloalkylalkyl or R^{21} -heterocycloalkylalkyl;

 R^6 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R^{21} -alkyl, R^{21} -cycloalkylalkyl, R^{21} -cycloalkyl, R^{21} -aryl or R^{21} -arylalkyl;

 R^7 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, 65 R^{21} -alkyl, R^{21} -cycloalkylalkyl, R^{21} -cycloalkyl, R^{21} -aryl or R^{21} -arylalkyl;

R15, R16 and R17 is H, R18-alkyl, alkyl or

$$\mathbb{R}^{23}$$
 \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N}

 R^{21} is alkyl, aryl, halo, $-OR^{15}$, $-NO_2$, $-C(O)R^{15}$, $-CH_2-N(R^{15})C(O)N(R^{16})(R^{17})$ or $-CH(R^{15})(R^{16})$; n is 1:

m is 1;

R¹⁸ is —OR²⁰

 R^{20} is aryl;

and

R²³ is alkyl.

In a group of preferred compounds R³, R⁴, R⁶ and R⁷ are

$$R^{21}$$
 or R^{21} ;

and

45

 R^1 and R^5 is H, CH₃,

In an additional group of preferred compounds;

U is a bond or -C(O)—;

W is a bond or -C(O)—;

X is $-N(R^5)$ —;

R¹ is H, alkyl, R²¹-alkyl, arylalkyl, R²¹-arylalkyl, cycloalkylalkyl, R²¹-cycloalkylalkyl, heterocycloalkylalkyl or R²¹-heterocycloalkylalkyl,

R² is H;

R³ is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R²¹-alkyl, R²¹-cycloalkylalkyl, R²¹-cycloalkyl, R²¹-aryl,

R²¹-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R²¹-heteroarylalkyl, R²¹-heteroaryl, R²¹-heterocycloalkyl or R²¹-heterocycloalkylalkyl;

R⁴ is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R^{21} -alkyl, R^{21} -cycloalkylalkyl, R^{21} -cycloalkyl, R^{21} -aryl, R²¹-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R²¹-heteroarylalkyl, R²¹-heteroaryl, R²¹-heterocycloalkyl or R²¹-heterocycloalkylalkyl;

 R^5 is H, alkyl, R^{21} -alkyl, arylalkyl, R^{21} -arylalkyl, cycloalkylalkyl, R²¹-cycloalkylalkyl, heterocycloalkyalkyl or R²¹-heterocycloalkylalkyl;

 R^6 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R^{21} -alkyl, R^{21} -cycloalkylalkyl, R^{21} -cycloalkyl, R^{21} -aryl, R^{21} -arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R²¹-heteroarylalkyl, R²¹-heteroaryl, R²¹-heterocycloalkyl or R²¹-heterocycloalkylalkyl;

R⁷ is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R²¹-alkyl, R²¹-cycloalkylalkyl, R²¹-cycloalkyl, R²¹-aryl, R²¹-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R21-heteroarylalkyl, R21-heteroaryl,

 R^{21} -heterocycloalkyl or R^{21} -heterocycloalkylalkyl; $R^{15},\,R^{16}$ and R^{17} is H, cycloalkyl, cycloalkylalkyl, R^{18} -alkyl, alkyl, aryl, R^{18} -aryl, R^{18} -arylalkyl, arylalkyl,

n is 1 or 2;

m is 0 or 1;

 R^{18} is $-OR^{20}$ or halo;

R²⁰ is aryl or halo substituted aryl;

 R^{21} is alkyl, aryl, heteroaryl, R^{22} -alkyl, R^{22} -aryl, R^{22} -heteroaryl, halo, heterocycloalkyl, $-N(R^{15})(R^{16})$, $-OR^{15}$, $-NO_2$, $-C(O)R^{15}$, $-N(R^{15})C(O)R^{16}$, $-N(R^{15})S(O)_2R^{16}$ $-CH_2$ — $N(R^{15})C(O)N(R^{16})(R^{17})$, — $N(R^{15})C(O)N(R^{16})$ (R^{17}) or — $CH(R^{15})(R^{16})$; R^{22} is — OR^{15} or halo

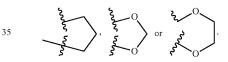
and

 R^{23} is H or alkyl.

As used above, and throughout the specification, the following terms, unless otherwise indicated, shall be understood to have the following meanings:

"Patient" includes both human and animals.

"Mammal" means humans and other mammalian animals.


"Alkyl" means an aliphatic hydrocarbon group which may be straight or branched and comprising about 1 to about 20 carbon atoms in the chain. Preferred alkyl groups contain about 1 to about 12 carbon atoms in the chain. More preferred 55 alkyl groups contain about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain. "Lower alkyl" means a group having about 1 to about 6 carbon atoms in the chain which may be straight or 60 branched. Non-limiting examples of suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, heptyl, nonyl and decyl. R³²-substituted alkyl groups include fluoromethyl, trifluoromethyl and cyclopropylmethyl.

"Alkenyl" means an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be 14

straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkenyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkenyl chain. "Lower alkenyl" means about 2 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and

"Alkynyl" means an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkynyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 4 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkynyl chain. "Lower alkynyl" means about 2 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkynyl groups include ethynyl, propynyl, 2-butynyl, 3-methylbutynyl, n-pentynyl, and decynyl.

"Aryl" means an aromatic monocyclic or multicyclic ring system comprising about 6 to about 14 carbon atoms, preferably about 6 to about 10 carbon atoms. The aryl group can be optionally substituted with one or more substituents (e.g., R¹⁸, R²¹. R²², etc.) which may be the same or different, and are as defined herein or two substituents on adjacent carbons can be linked together to form

Non-limiting examples of suitable aryl groups include phenyl and naphthyl.

"Heteroaryl" means an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one to four of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. Preferred heteroaryls contain about 5 to about 6 ring atoms. The "heteroaryl" can be optionally substituted by one or more R²¹ substituents which may be the same or different, and are as defined herein. The prefix aza, oxa or thia before the heteroaryl root name means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom. A nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide. Non-limiting examples of suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, imidazo[1,2-a]pyridinyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl, pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindolyl, 1,2,4-triazinyl, benzothiazolyl and the like.

"Cycloalkyl" means a non-aromatic mono- or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms. Preferred cycloalkyl rings contain about 5 to about 7 ring atoms. The

cycloalkyl can be optionally substituted with one or more R²¹ substituents which may be the same or different, and are as defined above. Non-limiting examples of suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Non-limiting examples of suitable multicyclic cycloalkyls include 1-decalin, norbornyl, adamantyl and the like. Further non-limiting examples of cycloalkyl include the following

"Cycloalkylether" means a non-aromatic ring of 3 to 7 members comprising an oxygen atom and 2 to 7 carbon atoms. Ring carbon atoms can be substituted, provided that substituents adjacent to the ring oxygen do not include halo or 50 substituents joined to the ring through an oxygen, nitrogen or sulfur atom.

"Cycloalkenyl" means a non-aromatic mono or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms which contains at least one carbon-carbon double bond. The cycloalkenyl ring can be optionally substituted with one or more R²¹ substituents which may be the same or different, and are as defined above. Preferred cycloalkenyl rings contain about 5 to about 7 ring atoms. Non-limiting examples of suitable monocyclic cycloalkenyls include cyclopentenyl, cyclohexenyl, cycloheptenyl, and the like. Non-limiting example of a suitable multicyclic cycloalkenyl is norbornylenyl.

"Heterocyclenyl" means a non-aromatic monocyclic or multicyclic ring system comprising about 3 to about 10 ring 65 atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other 16

than carbon, for example nitrogen, oxygen or sulfur atom, alone or in combination, and which contains at least one carbon-carbon double bond or carbon-nitrogen double bond. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocyclenyl rings contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclenyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. The heterocyclenyl can be optionally substituted by one or more 10 ring system substituents, wherein "ring system substituent" is as defined above. The nitrogen or sulfur atom of the heterocyclenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of suitable monocyclic azaheterocyclenyl groups include 1,2,3, 4-tetrahydropyridine, 1,2-dihydropyridyl, 1,4-dihydropyridyl, 1,2,3,6-tetrahydropyridine, 1,4,5,6-tetrahydropyrimi-2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, and the like. Non-limiting examples of suitable oxaheterocyclenyl groups include 3,4-dihydro-2H-pyran, 20 dihydrofuranyl, fluorodihydrofuranyl, and the like. Non-limiting example of a suitable multicyclic oxaheterocyclenyl 7-oxabicyclo[2.2.1]heptenyl. Non-limiting examples of suitable monocyclic thiaheterocyclenyl rings include dihydrothiophenyl, dihydrothiopyranyl, and the like.

"Halo" means fluoro, chloro, bromo, or iodo groups. Preferred are fluoro, chloro or bromo, and more preferred are fluoro and chloro.

"Haloalkyl" means an alkyl as defined above wherein one or more hydrogen atoms on the alkyl is replaced by a halo group defined above.

"Heterocyclyl" (or heterocycloalkyl) means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which 1-3, preferably 1 or 2 of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocyclyls contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. The heterocyclyl can be optionally substituted by one or more R²¹ substituents which may be the same or different, and are as defined herein. The nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Non-limiting examples of suitable monocyclic heterocyclyl rings include piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,3-dioxolanyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.

"Arylalkyl" means an aryl-alkyl- group in which the aryl and alkyl are as previously described. Preferred aralkyls comprise a lower alkyl group. Non-limiting examples of suitable aralkyl groups include benzyl, 2-phenethyl and naphthalenylmethyl. The bond to the parent moiety is through the alkyl.

"Arylcycloalkyl" means a group derived from a fused aryl and cycloalkyl as defined herein. Preferred arylcycloalkyls are those wherein aryl is phenyl and cycloalkyl consists of about 5 to about 6 ring atoms. The arylcycloalkyl can be optionally substituted by 1-5 R²¹ substituents. Non-limiting examples of suitable arylcycloalkyls include indanyl and 1,2, 3,4-tetrahydronaphthyl and the like. The bond to the parent moiety is through a non-aromatic carbon atom.

"Arylheterocycloalkyl" means a group derived from a fused aryl and heterocycloalkyl as defined herein. Preferred arylcycloalkyls are those wherein aryl is phenyl and heterocycloalkyl consists of about 5 to about 6 ring atoms. The

arylheterocycloalkyl can be optionally substituted by 1-5 R²¹ substituents. Non-limiting examples of suitable arylheterocycloalkyls include

The bond to the parent moiety is through a non-aromatic carbon atom.

Similarly, "heteroarylalkyl" "cycloalkylalkyl" and "heterocycloalkylalkyl" mean a heteroaryl-, cycloalkyl- or heterocycloalkyl-alkyl- group in which the heteroaryl, cycloalkyl, heterocycloalkyl and alkyl are as previously described. Preferred groups contain a lower alkyl group. The bond to the parent moiety is through the alkyl.

"Acyl" means an H—C(O)—, alkyl-C(O)—, alkenyl-C 20 (O)—, alkynyl-C(O)— or cycloalkyl-C(O)— group in which the various groups are as previously described. The bond to the parent moiety is through the carbonyl. Preferred acyls contain a lower alkyl. Non-limiting examples of suitable acyl groups include formyl, acetyl, propanoyl, 2-methylpropanoyl, butanoyl and cyclohexanoyl.

"Alkoxy" means an alkyl-O— group in which the alkyl group is as previously described. Non-limiting examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and heptoxy. The bond to the parent 30 moiety is through the ether oxygen.

"Alkyoxyalkyl" means a group derived from an alkoxy and alkyl as defined herein. The bond to the parent moiety is through the alkyl.

"Arylalkenyl" means a group derived from an aryl and ³⁵ alkenyl as defined herein. Preferred arylalkenyls are those wherein aryl is phenyl and the alkenyl consists of about 3 to about 6 atoms. The arylalkenyl can be optionally substituted by one or more R²⁷ substituents. The bond to the parent moiety is through a non-aromatic carbon atom.

"Arylalkynyl" means a group derived from a aryl and alkenyl as defined herein. Preferred arylalkynyls are those wherein aryl is phenyl and the alkynyl consists of about 3 to about 6 atoms. The arylalkynyl can be optionally substituted by one or more R^{27} substituents. The bond to the parent 45 moiety is through a non-aromatic carbon atom.

The suffix "ene" on alkyl, aryl, hetercycloalkyl, etc. indicates a divalent moiety, e.g., —CH₂CH₂— is ethylene, and

is para-phenylene.

The term "optionally substituted" means optional substitution with the specified groups, radicals or moieties, in available position or positions.

Substitution on a cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, or heteroarylalkyl moiety includes substitution on 60 the ring portion and/or on the alkyl portion of the group.

When a variable appears more than once in a group, e.g., R^8 in $-N(R^8)_2$, or a variable appears more than once in the structure of formula I, e.g., R^{15} may appear in both R^1 and R^3 , the variables can be the same or different.

With reference to the number of moieties (e.g., substituents, groups or rings) in a compound, unless otherwise

defined, the phrases "one or more" and "at least one" mean that there can be as many moieties as chemically permitted, and the determination of the maximum number of such moieties is well within the knowledge of those skilled in the art. With respect to the compositions and methods comprising the use of "at least one compound of formula I," one to three compounds of formula I can be administered at the same time, preferably one.

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.

The wavy line as a bond generally indicates a mixture of, or either of, the possible isomers, e.g., containing (R)-and (S)-stereochemistry. For example,

means containing both

Lines drawn into the ring systems, such as, for example:

indicate that the indicated line (bond) may be attached to any of the substitutable ring carbon atoms.

As well known in the art, a bond drawn from a particular atom wherein no moiety is depicted at the terminal end of the bond indicates a methyl group bound through that bond to the atom, unless stated otherwise. For example:

represents

50

It should also be noted that any heteroatom with unsatisfied valences in the text, schemes, examples, structural formulae, and any Tables herein is assumed to have the hydrogen atom or atoms to satisfy the valences.

Those skilled in the art will recognize that certain compounds of formula I are tautomeric, and all such tautomeric forms are contemplated herein as part of the present invention. For example, a compound wherein X is $-N(R^5)$ — and R^1 and R^5 are each H can be represented by any of the following structures:

$$R^{5}N \xrightarrow{R^{2}} N \xrightarrow{R^{1}} N \xrightarrow{R^{1}} N \xrightarrow{R^{2}} N \xrightarrow{R^{5}N} N \xrightarrow{R^{3}} W \xrightarrow{R^{4}} W \xrightarrow{R^{4}} W$$

When R^{21} and R^{22} , are, for example, —N(R^{15})C(O)N(R^{16}) (R^{17}) and R^{15} and R^{16} form a ring, the moiety formed, is, for example,

$$R^{23}$$
 or R^{23} or R^{23}

Prodrugs and solvates of the compounds of the invention are also contemplated herein. The term "prodrug", as 35 employed herein, denotes a compound that is a drug precursor which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield a compound of formula I or a salt and/or solvate thereof. A discussion of prodrugs is provided in T. Higuchi and V. Stella, 40 *Pro-drugs as Novel Delivery Systems* (1987) Volume 14 of the A.C.S. Symposium Series, and in *Bioreversible Carriers in Drug Design*, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press, both of which are incorporated herein by reference thereto.

"Solvate" means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example 50 when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like. "Hydrate" is a solvate wherein the solvent 55 molecule is H₂O.

"Effective amount" or "therapeutically effective amount" is meant to describe an amount of compound or a composition of the present invention effective in inhibiting aspartyl protease and/or inhibiting BACE-1 and thus producing the 60 desired therapeutic effect in a suitable patient.

The compounds of formula I form salts which are also within the scope of this invention. Reference to a compound of formula I herein is understood to include reference to salts thereof, unless otherwise indicated. The term "salt(s)", as 65 employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inor-

ganic and/or organic bases. In addition, when a compound of formula I contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions ("inner salts") may be formed and are included within the term "salt(s)" as used herein. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful. Salts of the compounds of the formula I may be formed, for example, by reacting a 10 compound of formula I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization. Acids (and bases) which are generally considered suitable for the formation of pharmaceutically useful salts 15 from basic (or acidic) pharmaceutical compounds are discussed, for example, by S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson et al, The Practice of Medicinal Chemistry (1996), Academic Press, New York; in The Orange Book (Food & Drug Administration, Washington, D.C. on their website); and P. Heinrich Stahl, Camille G. Wermuth (Eds.), Handbook of Pharmaceutical Salts: Properties, Selection, and Use, (2002) Int'l Union of Pure and Applied Chemistry, pp. 330-331. These disclosures are incorporated herein by reference thereto.

Exemplary acid addition salts include acetates, adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, diglu-30 conates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates, methanesulfonates, methyl sulfates, 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pamoates, pectinates, persulfates, 3-phenylpropionates, phosphates, picrates, pivalates, propionates, salicylates, succinates, sulfates, sulfonates (such as those mentioned herein), tartarates, thiocyanates, toluenesulfonates (also known as tosylates,) undecanoates, and the like.

Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, aluminum salts, zinc salts, salts with organic bases (for example, organic amines) such as benzathines, diethylamine, dicyclohexylamines, hydrabamines (formed with N,N-bis (dehydroabietyl)ethylenediamine). N-methyl-D-glucamines, N-methyl-D-glucamides, t-butyl amines, piperazine, phenylcyclohexylamine, choline, tromethamine, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e.g. decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.

All such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.

All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts, solvates and prodrugs of the compounds as well as the salts and solvates of the prodrugs), such as those which may exist due to asymmetric carbons on various sub-

30

35

stituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention. Individual stereoisomers of the compounds of the invention may, for example, be sub- 5 stantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the *IUPAC* 1974 Recommendations. The use of the terms "salt", "solvate" 10 "prodrug" and the like, is intended to equally apply to the salt, solvate and prodrug of enantiomers, stereoisomers, rotamers, tautomers, racemates or prodrugs of the inventive compounds.

Polymorphic forms of the compounds of formula I, and of 15 the salts, solvates and prodrugs of the compounds of formula I, are intended to be included in the present invention

Compounds of formula I can be made using procedures known in the art. Preparative methods for preparing starting materials and compounds of formula I are show below as 20 general reaction schemes (Method A, Method B, etc.) followed by specific procedures, but those skilled in the art will recognize that other procedures can also be suitable. In the Schemes and in the Examples below, the following abbreviations are used:

methyl: Me; ethyl: Et; propyl: Pr; butyl: Bu; benzyl: Bn; tertiary butyloxycarbonyl: Boc or BOC

high pressure liquid chromatography: HPLC

liquid chromatography mass spectroscopy: LCMS

room temperature: RT or rt

day: d; hour: h; minute: min

retention time: R,

microwave: μW

saturated: sat.; anhydrous: anhyd.

1-hydroxybenzotriazole: HOBt

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride: EDC1

ethyl acetate: EtOAc

Benzyloxycarbonyl: CBZ

[1-(chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]oc- 40 tane bis(tetrafluoroborate)]: Selectfluor

1,8-diazabicyclo[5,4,0]undec-7-ene: DBU

tetrahydrofuran: THF; N,N-dimethylformamide: DMF; methanol: MeOH; diethyl ether: Et₂O; acetic acid: AcOH; acetonitrile: MeCN; trifluoroacetic acid: TFA; dichlo- 45 romethane: DCM; dimethoxyethane: DME; diphenylphosphinoferrocene (dppf):

n-butyllithium: n-BuLi; lithium diisopropylamide: LDA 1-hydroxy-7-azabenzotriazole: HOAt

4-N,N-dimethylaminopyridine: DMAP; diisopropylethy- 50 lamine: DIEA; N-methylmorpholine: NMM

Microporous Toluene sulfonic acid resin (MP-TsOH resin) tris-(2-aminoethyl)aminomethyl polystyrene (PStrisamine)

methylisocyanate polystyrene (PS-NCO)

Saturated (sat.); anhydrous. (anhyd); room temperature (rt); hour (h); Minutes (Min), Retention Time (R_t); molecular weight (MW); milliliter (mL); gram (g). milligram (mg); equivalent (eq); day (d); microwave (μ W); microliter (μ L);

All NMR data were collected on 400 MHz NMR spectrom- 60 eters unless otherwise indicated. LC-Electrospray-Mass spectroscopy with a C-18 column and 5% to 95% MeCN in water as the mobile phase was used to determine the molecular mass and retention time. The tables contain the compounds with retention time/observed MW and/or NMR data. 65

For internal consistency in the reaction schemes shown in Methods A to AA, the product of each method is shown as

structure A4, B4, C3, etc., wherein certain variables are as defined for that method, but it will be apparent that, for example, A4 has the same structure as C3. That is, different methods can be used to prepare similar compounds.

The compounds in the invention may be produced by processes known to those skilled in the art and as shown in the following reaction schemes and in the preparations and examples described below. Table I contains the compounds with observed m/e values from mass spectrascopy and/or NMR data. These compounds can be obtained with synthetic methods similar to these listed in the last column using appropriate reagents.

Method A

$$R^4$$
 R^3
 R^4
 R^4
 R^3

Method A, Step 1:

To a solution of A1 (R^3 =CH₃ & R^4 =CH₂CH(CH₃)₂) (10 mmol, 1 eq) in 30 ml of anhyd. CH₂Cl₂ was added thiocarbonyl dipyridone (1.2 eq). After stirring overnight the solution was diluted with CH2Cl2, washed with 1N HCl, H2O $(2\times)$, and a saturated aqueous NaCl solution $(2\times)$. The organic solution was dried over Na₂SO₄, filtered and concentrated. The crude material was purified via flash chromatography to afford A2 (R^3 =CH₃ & R^4 =CH₂CH(CH₃)₂).

Method A, Step 2:

A solution of 3,5-difluorobenzyl amine (0.15 mmol, 1.5 eq) in THF (0.15 mL) was added to a solution of A2 (R^3 =CH₃ & R^4 =CH₂CH(CH₃)₂) (0.1 mmol, 1 eq) in anhydrous CH₂Cl₂ (1 mL). The reaction mixture was refluxed overnight. The reaction solution was added to MP-TsOH resin (2-3 eq) and diluted with CH₃CN. The suspension was agitated overnight. The mixture was filtered and the filtrate was concentrated to afford A3 (R1=3,5-difluorobenzyl, R3=CH3, & R4=CH2CH $(CH_3)_2$).

Method A, Step 3:

To a solution of A3 (R¹=3,5-difluorobenzyl, R³=CH₃, & R^4 =CH₂CH(CH₃)₂) (10 mg) in CH₃OH (1 mL) was added NH₄OH (0.44 mL) and t-butyl hydrogen peroxide (0.1 mL) and the reaction mixture was agitated for 2 d. The solution was concentrated, the resulting residue was dissolved in

CH₃OH (1.2 mL) and was treated with sulfonic acid resin. The suspension was agitated overnight and the resin was washed with CH₃OH (4×10 min) before it was treated with 2 N NH₃ in CH₃OH for 1 h. The suspension was filtered and the filtrate was concentrated to give the crude material which was 5 purified by preparative HPLC/LCMS eluting with a CH₃CN/

 H_2O gradient to afford A4 (R¹=3,5-difluorobenzyl, R²=H, R³=CH₃, & R⁴=CH₂CH(CH₃)₂). NMR (CD₃OD): δ 6.9, m, 3H; δ 4.8-4.9, m; δ 1.75, d, 2H; δ 1.5, m, 1H; δ 1.42, s, 3H; δ 0.85, d, 3H; δ 0.65, d, 3H. ES_LCMS (m/e) 296.1.

The following compounds were synthesized using similar methods:

#	Structure	MW	Obs. m/e
1	O NH NH	223	224
2	O NH NH	223	224
3	O NH NH	225	226
4	O NH NH	225	226
5	O NH NH	227	228

	-continued		
#	Structure	MW	Obs. m/e
6	O NH NH	237	238
7	NH NH	239	240
8	O NH NH	239	240
9	O NH NH	239	240
10	O NH NH	240	241

#	Structure	MW	Obs. m/e
11	O NH NH	241	242
12	HO NH	241	242
13	O NH NH	251	252
14	O NH NH	253	254
15	O NH NH	254	255
	O NH NH		

	-continued		
#	Structure	MW	Obs. m/e
16	ON NH NH	255	256
17	HO NH NH	255	256
18	O HN OH	255	256
19	N NH NH	260	261
20	O NH NH	260	261

	continued		
#	Structure	MW	Obs. m/e
21	NH NH NH	265	266
22	O NH	265	266
23	O NH NH	265	266
24	O NH NH	267	268
25	O NH NH	268	269

			Obs.
#	Structure	MW	m/e
26	O NH NH	268	269
27	O NH NH	269	270
28	O NH NH	273	274
29	O NH NH	273	274

	-continued		
#	Structure	MW	Obs. m/e
30	O NH NH	274	275
31	O NH NH	274	275
32	O NH NH	274	275
33		277	278

#	Structure	MW	Obs. m/e
34	O NH NH	279	280
35	O NH NH	280	281
36	O NH NH	280	281
37	O NH	280	281

	-continued		
#	Structure	MW	Obs. m/e
38	O NH NH	280	281
39	O NH NH	281	282
40	O NH NH	282	283
41	O NH	282	283

	continued		
#	Structure	MW	Obs. m/e
42	N—NH NH NH	282	283
43	O NH NH	283	284
44	O NH NH	285	286
45	O NH NH	287	288

	-continued		
#	Structure	MW	Obs. m/e
46	O NH NH	287	288
47	O NH NH	289	290
48	O NH NH	293	294
49	O NH NH	294	295

	continued		
#	Structure	MW	Obs. m/e
50	O NH NH	294	295
51	O NH NH	295	296
52	O NH NH	296	297
53	O NH NH	301	302

	Continued		
#	Structure	MW	Obs. m/e
54	O NH NH	303	304
55	O'-N+ NH NH	304	305
56	O-N+=O N+=O NH NH	304	305
57	O NH NH	305	306

	-continued		
#	Structure	MW	Obs. m/e
58	O NH	307	308
59	O NH NH	307	308
60	O NH NH	308	309
61	O NH NH	310	311

#	Structure	MW	Obs. m/e
62	O NH NH	317	318

			Obs.
#	Structure	MW	m/e
65		324	325
	0		
	N		
	N ₋ NH		
	0=		
	ŇH		
	, —		
66	F	327	328
	F		
	$O \longrightarrow NH$		
	NH /		
67	F	327	328
	F F		
	N NH		
	O NH		
	\nearrow		
68	Cl	327	328
	CI		
	O NH		
	NH		
	$\stackrel{\prime}{\longrightarrow}$		
	\		

#	Structure	MW	Obs. m/e
69	O NH NH	327	328
70	O NH NH	328	329
71	O NH NH	330	331
72	O NH NH	331	332

	-continued		
#	Structure	MW	Obs. m/e
73	O NH NH	331	332
74	O NH NH	335	336
5	NH NH	335	336
6	O N NH O NH	337	338

	-continued		
#	Structure	MW	Obs. m/e
77	Br NH NH	337	338
78	O NH NH	342	343
79	HN	345	346
80	HN N O	345	346

	-continued		
#	Structure	MW	Obs. m/e
81		349	350
82	HO N O HN H	349	350
83	O NH NH	351	352
84	DE NH NH	351	352

#	-continued Structure	MW	Obs.
85	HN N O	351	352
86	O NH NH	359	360
87	HN N O	361	362
88	HN N O	361	362

	-continued		
#	Structure	MW	Obs. m/e
89	HN N O	361	362
90	O NH NH	363	364
91	HO NO	363	364
92	HO NHO NHO NHO NHO NHO NHO NHO NHO NHO N	363	364

	-continued		Obs.
#	Structure	MW	m/e
93	HO N O O O O O O O O O O O O O O O O O O	363	364
94	HN N O	363	364
95	HOW!	363	364
96	Cl NH NH	369	370

	-continued		
#	Structure	MW	Obs. m/e
97	O NH NH	374	375
98	HN N O	375	376
99	HN	375	376
100	HN N O	377	378

	-continued		
#	Structure	MW	Obs. m/e
101	HN NO	377	378
102	HO NO	377	378
103	NH NH	381	382
104	N NH NH	382	383

#	Structure	MW	Obs m/e
105	O NH NH	385	386
106	HN N O	385	386
107	O NH NH	386	387
108	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	389	390

	-continued		
#	Structure	MW	Obs. m/e
109	OH NH	391	392
110	HO N N N H	391	392
111		391	392
112	HN NO	391	392

	-continued		
#	Structure	MW	Obs.
13	HN N O	393	394
	HO NO	393	394
5	O NH NH	400	401
16	HN N O	401	402

	-continued		
#	Structure	MW	Obs. m/e
117	HN N O	401	402
118	HN N O	401	402
119	HN	401	402
120	HO NO O	403	404

#	Structure	MW	Obs. m/e
121	HO N O	403	404
122	HONNO	403	404
123	HN NO	405	406
124	HO N H	405	406

	-continued		
#	Structure	MW	Obs. m/e
125	HN N O	409	410
126	HN	409	410
127	HN	409	410
128	HN N O	409	410

	-continued		
#	Structure	MW	Obs. m/e
129	O NH	411	412
130	H NH NH	413	414
131	HN N O	413	414
132	O NH NH	414	415

#	Structure	MW	Obs. m/e
133	H NH NH	415	416
134	HN N O	415	416
135	HN	415	416
136	HN N O	417	418
137	H NH NH	419	420

#	Structure	MW	Obs. m/e
138	HN	421	422
139		423	424
	HN		
140	HN	425	426
141	HO N O	425	426

#	Structure	MW	Obs. m/e
142	HN N O	425	426

			Obs.
#	Structure	MW	m/e
145	O N NH	430	431
46		430	431
147	O NH NH	431	432
148	O NH NH	433	434

	continued		
#	Structure	MW	Obs. m/e
149	HN N O	437	438
150	HO HO N HO	439	440
151	O'N' HN N O HN H	440	441
152	ONT ON THE PROPERTY OF THE PRO	440	441

#	Structure	MW	Obs. m/e
153	HN O NH NH NH	441	442
154	HN	441	442
155	NH NH NH	442	443
156	F—NON NH ON	447	448

#	Structure	MW	Obs. m/e
157	H NH NH NH	449	450
158	O NH NH NH NH NH	455	456
159	CI N O N HN H	463	464
160	CI	463	464

#	Structure	MW	Obs. m/e
161	HN N O	471	472
162	ON SHINE THE STATE OF THE STATE	473	474
163	O NH NH	481	482
164	ON NH NH	481	482

#	Structure	MW	Obs. m/e
165	HN N O	487	488

$$\begin{array}{c} 166 \\ \text{H}_2\text{N} - \text{S} = 0 \\ \text{HN} \end{array}$$

#	Structure	MW	Obs. m/e
168	HN NH NH NH	504	505

#	Structure	MW	Obs. m/e
171	O NH NH NH	525	526
172	O H NH NH NH NH Br	527	528
173	NH NH Br	528	529
174	NH NH NH	535	536

#	Structure	MW	Obs. m/e
175	Manage Ma	535	536

#	Structure	MW	Obs. m/e
179	HN	554	555
	O NH		
	NN NN		
180	O NH	556	557
	NH NH NH		
181		569	570
	N N N N N N N N N N N N N N N N N N N	302	

	-continued		
#	Structure	MW	Obs. m/e
182	NH NH NH NH	581	582
183	O NH NH	374	NA
184		388	NA

#	Structure	MW	Obs. m/e
185	O NH NH	337	NMR
186	O NH NH	351	NMR

Method B

A modified literature procedure was used (Ugi, I. Angew. Chem. 1962, 74 9-22).

Method B, Step 1:

To a solution of B1 (HCl salt, R¹=3-chlorophenethyl) (1.1 g, 5.73 mmol) in anhydrous CH₃OH (15 mL) was added potassium thiocyanate (0.56 g, 5.73 mmol). The reaction mixture was heated to 60° C. for 1 h. The suspension was filtered and the filtrate was added to B5 (R³=Me, R⁴='Bu) (0.72 mL, 5.73 mmol) and benzyl isocyanide (0.77 mL, 6.3 mmol). The mixture was stirred overnight before the solution was concentrated and the residue was purified via flash chromatography eluting with ethyl acetate in hexane to yield 0.28 g of B2 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, and R¹=3-Chlorophenethyl).

Method B, Step 2:

A solution of 40% concentrated HCl in CH₃CH₂OH was added to B2 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, and R¹=3-Chlorophenethyl) and the solution was heated in a microwave at 160° C. for 30 min. The solution was concentrated and purified via reverse phase preparative HPLC eluting with a CH₃CN/H₂O (with 0.1% formic acid) gradient to afford B3 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, and R¹=3-Chlorophenethyl). Method B, Step 3:

Compound B4 (R²=H, R₃=CH₃, R⁴=CH₂CH(CH₃)₂, and R¹=3-Chlorophenethyl) was prepared from B3 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, and R¹=3-Chlorophenethyl) following a procedure similar to Method A, Step 3. NMR(CD₃OD): δ 8.1,

 $\begin{array}{l} br, 1H; \delta\,7.35, s, 1H; \delta\,7.25, m, 3H; \delta\,3.6, m, 1H; \delta\,3.4, m, 1H; \\ \delta\,3.0, m, 1H; \delta\,2.8, m, 1H; \delta\,1.75, m, 1H; \delta\,1.6, m, 1H; \delta\,1.35, \\ m, 1H; \delta\,1.2\ s, 3H; \delta\,0.8, m, 6H.\ ES_LCMS\ (m/e):\ 308.1 \end{array}$

The following compounds were prepared using similar methods

#	Structure	MW	Obs. m/e	10
545	O NH CI	251	252	15
546	H NH	293	294	

Structure MW Obs.
551
ONE CI
CI

Method C

N=C=S

$$R^{1}$$
 R^{2}
 R^{4}
 R^{3}
 R^{4}
 R^{3}

Method C, Step 1:

35

55

60

65

A solution of C1 (R³=R⁴=CH $_2$ CH $_2$ CH $_2$ CH $_3$) (50 mg, 0.25 mmol) and C4 (R¹=3-chlorophenyl) (38 μ L, 0.26 mmol) was refluxed overnight. Trisamine resin (2 eq) and polystyrene isocyanate resin (2 eq) was added and the mixture was agitated. After 3 h, the suspension was filtered and the resin was washed with CH $_2$ Cl $_2$ (3×) and CH $_3$ OH (3×). The filtrate was concentrated to afford C2 (R¹=3-Cl—C $_6$ H $_4$, R³=R⁴=CH $_2$ CH $_2$ CH $_2$ CH $_3$) (60 mg, 68%).

Method C, Step 2

Compound C3 (R 1 =3-Cl—C $_6$ H $_4$, R 2 =H, R 3 =R 4 =CH $_2$ CH $_2$ CH $_2$ CH $_3$) was prepared from C2 (R 1 =3-Cl—C $_6$ H $_4$, R 3 =R 4 =CH $_2$ CH $_2$ CH $_2$ CH $_3$) following a procedure similar to Method A, Step 3. NMR(CDCl3): δ 7.4, m, 2H; δ 7.2, m, 2H; δ 5.0, s, 2H; δ 1.7, m, 4H; δ 1.1, m, 8H; δ 0.7; m, 6H. ES-LCMS (m/e): 336.1.

The following compounds were prepared using similar method.

-cc	. 12	tir	 പ

-continued					-continued		
Structure	MW	Obs. m/e		#	Structure	MW	Obs. m/e
NH NH	211	212	5	648	NH	251	252
NH	215	216	10				
NH			15 20	649	CI	267	268
NH NH	225	226	25		O NH NH		
			30	650	CI	309	310
NH	239	240	35 40		O NH NH		
NH NH	245	246	45	651	O NH	317	318
			50		NH		
NH NH	246	247	60	652	Cl NH NH	319	320

-00	'n	tir	111	Δď

	-continued				-continued	
#	Structure	MW	Obs. m/e	5#	Structure	Obs. MW m/e
653	NH NH Br	323	324	658	HN NH	335 336
654	NH	324	325	15	но	
	NH Br			20 659	NH	335 336
655	NH NH OH	329	330	30	OH OH	
				35	NH II	335 336
656	HO NH	329	330	40	NH	
657	CI	335	336	50	ОН	
				55 661	HN	335 336
	$O \longrightarrow NH$ NH			60	NH NH	

		_	
-00	onti	เทา	α

-confinited	

-continued			-continued			
#	Structure	MW	Obs. m/e		# Structure	Obs. MW m/e
662	NH NH NH	352	353	10	NH NH NH	420 421
663	NH NH NH NH	352	353	152025	668 NH NH NH	420 421
664	NH NH NH	377	378	30 35		
665	O NH NH	385	386	40	Method D $ \begin{array}{c} \text{KCN} \\ \text{(NH4)}_{2}\text{CO}_{3} \\ \text{CH}_{3}\text{CH}_{2}\text{OH/H}_{2}\text{O} \end{array} $	$\overset{\circ}{\downarrow}$
666		391	392	50 55	D1 H_2N OH R^4 R^3 $D3$ Method D, Step 1: A mixture of D1 ($R^3=R^4=CH_2$) cyanide (40 g) and ammonium can (100 mL) and H_2O (200 mL) was 1	R^4 R^3 D^4 C_6H_5) (20 g), potassium

(100 mL) and H₂O (200 mL) was heated in a sealed flask at 130° C. overnight to yield 25 g of D2 ($R^3=R^4=CH_2C_6H_5$) after filtration followed by washing with water.

Method D, Step 2: A solution of 2 N KOH (3 eq) was added to D2 $(R^3=R^4=CH_2C_6H_5)$ (1 eq) and irradiated via microwave at 185° C. for 3 h followed by addition of concentrated HCl to

the solution until a pH=2-3 was obtained. The solid was filtered and washed with water to afford D3 $(R^3{=}R^4{=}CH_2C_6H_5).$

Method D, Step 3:

A solution of trimethylsilyldiazomethane in hexane (2 N) (2 eq) was added drop wise to a solution of D3 ($R^3{=}R^4{=}CH_2C_6H_5$) (1 eq) in anhydrous CH_3OH (30 mL). After 1 h, an additional 2 eq of trimethylsilyldiazomethane in hexane (2 N) was added and the reaction was stirred for 20 minutes before it was was concentrated. The residue was dissolved in a 0.2 N HCl solution (25 mL) and washed with ether (3×). A saturated solution of Na_2CO_3 was added to the aqueous phase until the pH of the solution was basic. The solution was extracted with ethyl acetate (3×). The organic extracts were combined, dried over Na_2SO_4 , and concentrated to afford D4 ($R^3{=}R^4{=}CH_2C_6H_5$).

The following amino esters were prepared using a similar method.

-continued

 $_{
m D8}$ $_{
m 50}$ Method E

D9 E1
$$\frac{SOCl_2}{SOCl_2}$$

$$\frac{ZnCl_2}{THF}$$

$$\frac{Fh}{N}$$

-continued

O
Ph
LiOCH₃

$$CH_3OH$$
E3

CBZ
$$\stackrel{\text{H}}{\underset{\text{E4}}{\bigvee}}$$
 $\stackrel{\text{O}}{\underset{\text{O}}{\bigvee}}$ $\stackrel{\text{H}_2}{\underset{\text{Pd(OH)}_2/C}{\bigvee}}$ $\stackrel{\text{H}_2}{\underset{\text{HCl}}{\bigvee}}$ $\stackrel{\text{H}_2}{\underset{\text{CH}_3\text{OH}}{\bigvee}}$

$$H_2N$$
 R^4
 R^3
 $E5$

Method E, Step 1:

Thionyl chloride (0.47, 6.38 mmol) was added drop wise to 25 a solution of E1 (R^3 =CH₂CH₂C₆H₅) (2 g, 6.38 mmol) and benzaldehyde dimethyl acetal (0.96 mL, 6.38 mmol) in anhydrous THF at 0° C. under N₂. After 5 min, ZnCl₂ (0.87 g, 6.38 mmol) was added and the reaction mixture was stirred at 0° C. After 3 h, an additional amount of ZnCl₂ (0.18 g, 1.28 mmol) and thionyl chloride (0.1 mL, 1.28 mmol) were added and stirred for 1 h at 0° C. The reaction mixture was poured into a stirred suspension of ice/H₂O. The mixture was stirred occasionally until the ice melted. The aqueous solution was 35 extracted with ether (3x). The combined organic extracts were washed with H2O (3x), a sat. aqueous solution of NaHCO₃ (1x), and H₂O (2x). The organic solution was dried over Na₂SO₄, filtered and concentrated. The crude material was purified via flash chromatography eluting with ethyl 40 acetate in hexane to yield compound E2 (R^3 =CH₂CH₂C₆H₅).

Method E, Step 2:

A solution of lithium hexamethyldisilazide in hexane (1.0 M, 1.65 mL, 1.64 mmol) was added drop wise to a solution of E2 (R^3 =CH₂CH₂C₆H₅) (600 mg, 1.49 mmol) and HMPA 45 (0.85 mL) in THF (6.5 mL) cooled at -78° C. under N₂. After 15 min, isobutyl iodide (0.52 mL, 4.48 mmol) was added drop wise and the reaction mixture was stirred at -78° C. for 3 h. The reaction was warmed to -65° C., stirred for 2 h and warmed to rt overnight. The reaction solution was poured into 50 a mixture of sat. NaHCO₃ (aq)/ether/ice. The aqueous layer was extracted with ether (3×). The organic extracts were combined and washed with brine (2×). The organic solution was dried over Na₂SO₄, filtered and concentrated. The crude material was purified via flash chromatography eluting with 55 ethyl acetate in hexane to yield compound E3 (R^3 =CH₂CH₂C₆H₅, R^4 =CH₂CH(CH₃)₂).

Method E, Step 3:

A solution of lithium methoxide ($1 \, \text{N in CH}_3 \text{OH}$) ($0.36 \, \text{mL}$, $0.36 \, \text{mmol}$) was added to compound E3 ($R^3 = \text{CH}_2 \text{CH}_2 \text{C}_6 \text{H}_5$, 60 $R^4 = \text{CH}_2 \text{CH}(\text{CH}_3)_2$). The reaction mixture was shaken at rt for 50 min. An additional $0.55 \, \text{eq}$ of lithium methoxide were added. After 2.5 h, a sat. aqueous solution of NaHSO $_3$ ($0.75 \, \text{mL}$) and ethyl acetate (3 mL) was added to the reaction mixture and shaken for 15 min. The suspension was filtered. 65 The resulting white solid was washed with a sat. aqueous solution of NaHSO $_3$ ($1\times$) and ethyl acetate ($1\times$). The aqueous

phase of the filtrate was separated and extracted with ethyl acetate (2×). The organic extracts were combined and washed with a sat. aqueous solution of NaHSO₃ (8×). The organic solution was dried over Na₂SO₄, filtered and concentrated to afford E4 (R³=CH₂CH₂C₆H₅, R⁴=CH₂CH(CH₃)₂) (109 mg, 87%).

Method E, Step 4:

To a solution of E4 (R^3 =CH₂CH₂C₆H₅, R^4 =CH₂CH 10 (CH₃)₂) (109 mg, 0.28 mmol) in CH₃OH (4 mL) was added 1 N HCI (0.28 mL, 0.28 mmol) and 20% palladium hydroxide on carbon (22 mg). The reaction mixture was hydrogenated at 40 psi. After 2.5 h, the reaction was filtered and the catalyst was washed with CH₃OH (3×). The filtrate was concentrated 15 to afford E5 (R^3 =CH₂CH₂C₆H₅, R^4 CH₂CH(CH₃)₂) (78 mg, 96%).

The following aminoesters were prepared using similar method.

$$F \longrightarrow H_2N \longrightarrow O$$

$$H_2N$$
 O O

30

E14 35

40

-continued

E11
$$\frac{\text{-continued}}{5}$$
 E17

Method F

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

50
$$H_2N \longrightarrow O$$
55
E16
$$F1$$

 $\begin{array}{c} A \ 500 \ mL \ methanol \ solution \ of \ 20 \ g \ of \ D5 \ (R^3=benzyl, \\ n=1) \ with \ 1.5 \ eq \ of \ HCl \ was \ hydrogenated \ with \ 1 \ g \ of \ Rh/C \\ (5\% \ w/w) \ and \ 2 \ g \ of \ Pt/C \ (5\% \ w/w) \ at \ 60 \ psi \ for \ 2 \ days. \ The solid \ was \ filtered \ and \ washed \ with \ excessive \ methanol. \ The combined \ solution \ was \ evaporated \ to \ give \ 20 \ g \ of \ F1 \\ (R^3=cyclohexylmethyl, \ n=1) \ as \ HCl \ salt. \end{array}$

The following amino esters were examples prepared using similar method.

To a solution of G1 (R^1 =CH₂(3-ClC₆H₄) and R^3 =CH₃) (400 mg, 1.23 mmol, generated following a procedure similar to Method C, Step 1) in ethanol (5 mL) was added lithium 65 hydroxide monohydrate (100 mg, 2.45 mmol) in H_2O (0.5 mL). After 2.5 h, another portion of lithium hydroxide monohydrate (100 mg, 2.45 mmol) was added. After 5.5 h, the

reaction mixture was diluted with $\rm H_2O$ (15 mL) and extracted with ether (2×). A solution of 30% HCl was added to the aqueous phase until its pH=1 to 2. The solution was saturated with NaCl and extracted with ethyl acetate (3×). The organic solution was dried over Na₂SO₄, filtered and concentrated to afford G2 (R¹=CH₂(3-ClC₆H₄) and R³=CH₃) (357 mg, 93%). Method G, Step 2:

A solution of benzyl amine (1.2 eq) was added to G2 (R¹=CH₂(3-ClC₆H₄) and R³=CH₃) (1 eq), HOBT (1.5 eq) and polystyrene EDC resin (94 mg, 1.53 mmol/g, 3 eq) in 1:1 THF:CH₃CN (1 mL). The reaction mixture was shaken overnight at rt. Trisamine resin (85 mg, 3.38 mmol/g, 6 eq) and

isocyanate resin (100 mg, 1.47 mmol/g, 3 eq) was added. After 6 h, the suspension was filtered and the filtrate was concentrated to afford G3 (R^1 =CH₂(3-ClC₆H₄), R^3 =CH₃, R^{15} =CH₂C₆H₅ and R^{16} =H).

Method G, Step 3:

Compound G4 (R 1 =CH $_2$ (3-CIC $_6$ H $_4$), R 2 =H, R $_3$ =CH $_3$, R 15 =CH $_2$ C $_6$ H $_5$ and R 15 =H) was prepared from G3 (R 1 =CH $_2$ (3-CIC $_6$ H $_4$), R 3 =CH $_3$, R 15 =CH $_2$ C $_6$ H $_5$ and R 16 =H) following a procedure similar to Method A, Step 3.

The following compounds were prepared using similar methods.

#	Structure	MW	Obs. m/e
669	O NH	322	323

#	Structure	MW	Obs. m/e
672	CI NH ONH ONH NH	348	349

-continued

	-continued		
#	Structure	MW	Obs m/e
676	CI NH NH ON NH NH	384	385
677	CI NH NH ON NH	390	391
678	CI NH ONH ONH NH	393	3944
679	CI NH NH ON H	398	399

	-continued		
#	Structure	MW	Obs. m/e
680	CI NH ON NH	398	399
681	CI NH O	406	407
682	CI NH ONH ONH NH	412	413
683	O NH O NH O	414	415

-continued

#	Structure	MW	Obs. m/e
684	CI NH ONH ONH ON ONH ON	414	415

	-continued		
#	Structure	MW	Obs. m/e
687	O NH NH O NH	428	429
688	CI NH NH O NH O	434	435
689	CI NH NH ON	442	443

#	Structure	MW	Obs. m/e
690	CI NH NH O	449	450

#	Structure	MW	Obs. m/e
693	Structure Cl NH NH NH NH	511	m/e 512

Method H

Η4

-continued TfO 35 CH₂Cl₂ 40

H5

$$R^{21}$$
 R^{21}
 R^{21}

Method H, Step 1:

To a solution of H1 (R³=CH₃) (5 g, 39 mmol) in a 1:1 mixture of 0.5 M NaHCO₃:CH₃CH₂OH was added R¹—NCS (R¹=3-chlorobenzyl) (11.5 mL, 78 mmol). The reaction mixture was heated at 50° C. overnight. The reaction was cooled and diluted with water. The aqueous phase was extracted with ethyl acetate (5x). The organic extracts were combined, washed with water $(2\times)$ and dried over Na_2SO_4 . The solution was filtered and solvent was removed to give a small volume of solution. Hexane was added and the resulting suspension was filtered to yield 6.8 g of a solid H2 (R³=CH₃, R¹=CH₂(3-ClC₆H₄)) (61%). Method H, Step 2:

Compound H3 (R^3 =CH₃, R^1 =CH₂(3-ClC₆H₄)) was synthesized from H2 (R^3 =CH₃, R^1 =CH₂(3-ClC₆H₄)) following a procedure similar to Method A, Step 3.

Method H, Step 3:

To a solution of crude H3 (R^3 =CH₃, R^1 =CH₂(3-ClC₆H₄)) (14 mmol) in a 1:3 mixture of CH₃OH:THF was added 0.5 M NaHCO₃ in H₂O (28 mL, 14 mmol) and di-tert-butyl dicarbonate (3.69 g, 16.9 mmol). The reaction was stirred at rt for 2.5 h and then stored at –10° C. overnight. The reaction was diluted with brine and extracted with ethyl acetate (4×). The organic extracts were combined and washed with brine (1×). The organic solution was dried over Na₂SO₄, filtered and concentrated. The crude material was purified via flash chromatography eluting with ethyl acetate in hexane to afford 1.5 g of H4 (R^1 =CH₃(3-ClC₆H₄) and R^3 =CH₃).

Method H, Step 4:

A solution of triflic anhydride (128 $\mu L,~0.76$ mmol) in $_{15}$ CH $_2$ Cl $_2$ (5 mL) was added drop wise to a solution of H4 (R 1 =CH $_2$ (3-ClC $_6$ H $_4$) and R 3 =CH $_3$) (200 mg, 0.55 mmol) and 2,6-lutidine (176 $\mu L,~2.18$ mmol) at -30° C. The reaction mixture was stirred for 1.5 h. Water (10 mL) was added at -20° C. and the ice bath was removed. The reaction was stirred until it reached 0° C. The organic layer was separated, dried over Na $_2$ SO $_4$, filtered and concentrated to afford 310 mg of H5 (R 1 =CH $_2$ (3-ClC $_6$ H $_4$) and R 3 =CH $_3$).

Method H, Step 5:

A solution of crude H5 (R^1 =CH₂(3-ClC₆H₄) and R^3 =CH₃) ²⁵ (0.11 mmol) and 7N ammonia in Methanol (R^{21} —H=NH₂—H) (10 eq) was stirred overnight at rt. The reaction solution was concentrated. The crude material was purified using reverse phase preparative HPLC eluting with a CH₃CN/H₂O gradient with 0.1% formic acid to yield H6=CH₂(3-ClC₆H₄), R^3 =CH₃, R^{21} =NH₂).

Method H, Step 6:

A solution of 50% trifluoroacetic acid in CH₂Cl₂ (2 mL) was added to H6 (R¹=CH₂(3-ClC₆H₄), R³=CH₃, R²¹=NH₂). 35 After 40 min the solvent was evaporated and residue purified by preparative HPLC/LCMS eluting with a CH₃CN/H₂O gradient to afford H7 (R¹=CH₂(3-ClC₆H₄), R₃=CH₃, R²¹=NH2). NMR (CDCl₃), δ 7.45, m, 3H; δ 7.35, m, 1H; δ 4.9, m, 2H; δ 3.5, m, 2H; δ 1.65, s, 3H. ES_LCMS (m/e) 40 267.07.

The following compounds were prepared using similar methods.

				45	
#	Structure	MW	Obs. m/e	_	700
694	HN	238	239		
	H N NH ₂			50	
				55	
695	NNH NH	248	249		701
				60	

65

	-continued		
#	Structure	MW	Obs. m/e
696	HN H CI	257	258
697	NH NH NH	264	265
698	$O \longrightarrow NH$ NH H_2N	266	267
699	HN H	292	293
700	NH NH N	308	309
701	NH NH NH	314	315

2.1
-confinited

#	Structure	MW	Obs. m/e	_
702	HN H N N N N N N N N N N N N N N N N N	320	321	10
				15

45 714

715

$$R_{15}$$
 R_{16}
 R_{16}
 R_{10}
 R

Method I, Step 1:

Diethylaminomethyl polystyrene resin (5 eq) was added to a solution of the formate salt of I1 (R¹=CH₂(3-ClC₆H₄), R^3 =CH₃ and R^{16} =H) in CH₂Cl₂ and the suspension was agitated. After 15 min, the mixture was filtered and the resin was washed with CH₂Cl₂ (4x). The filtrate was concentrated to afford the free base I1 (R¹=CH₂(3-ClC₆H₄), R³=CH₃ and

A solution of R¹⁵COOH (R¹⁵=Phenethyl) (1.3 eq) was 35 added to a mixture of EDC resin (41 mg, 1.53 mmol/g, 3 eq), HOBT (1.5 eq), and the free base of I1 (R^1 =CH₂(3-ClC₆H₄), R^3 =CH₃ and R^{16} =H) (0.021 mmol) in 1:1 CH₃CN:THF. The suspension was agitated overnight. Polystyrene isocyanate resin (45 mg, 3 eq), polystyrene trisamine resin (40 mg, 6 eq) 40 and a 1:1 mixture of CH₃CN:THF (0.5 mL) was added. The mixture was agitated for 6 h. The suspension was filtered and the filtrate was concentrated to afford I2 (R1=CH2(3- ClC_6H_4), $R^3=CH_3$, $R^{16}=H$ and $R^{15}=CH_2CH_2C_6H_5$).

Method I, Step 2:

I3 $(R^1=CH_2(3-CIC_6H_4), R^3=CH_3, R^{16}=H$ and R^{15} = $CH_2CH_2C_6H_5$) was prepared from I2 (R^1 = $CH_2(3 ClC_6H_4$), $R^3=CH_3$, $R^{16}=H$ and $R^{15}=CH_2CH_2C_6H_5$) using method similar to method H step 6.

The following compounds were prepared using similar method.

#	Structure		Obs. m/e	55
710	NH NH H	280	281	60
				65

 -continued

-continued				-continued			
#	Structure	MW	Obs. m/e	_	# Structure	MW	Obs. m/e
716	NH NH NH O	372	373	5 10	O NH	410	11
717	NH ONH NH	376	377	20		414	15
718		398	399	25	O NH NH		
	CI NH NH NH			30			
719	CI NH NH OH	406	407	40	CI NH NH	420	21
720	CI NH NH	410	11	50	F		
	O NH H NH			60	724 O NH NH NH NH NO O	428	29

25

30

727

728

729

-continued

#	Structure	MW	Obs. m/e
725	CI NH NH HIN O	511	12

Method J

$$R^{15}$$
 R^{15}
 R

Method J, Step 1:

Diethylaminomethyl polystyrene resin (5 eq) was added to 60 a solution of J1 (TFA salt, R^1 =CH₂(3-ClC₆H₄) and R^3 =CH₃) in CH₂Cl₂ and the suspension was agitated. After 15 min, the mixture was filtered and the resin was washed with CH₂Cl₂ (4×). The filtrate was concentrated to afford the free base. A solution of R^{15} NCO (R^{15} =butyl) (2 eq) in CH₂Cl₂ was added 65 to the free base of J1 (R^1 CH₂(3-ClC₆H₄) and R^3 =CH₃) (0.021 mmol) in 1:1 CH₃CN:THF. The suspension was agitated

overnight. Polystyrene isocyanate resin (45 mg, 3 eq), polystyrene trisamine resin (40 mg, 6 eq) and a 1:1 mixture of CH₃CN:THF (0.5 mL) was added. The mixture was agitated for 6 h. The suspension was filtered and the filtrate was concentrated to afford J2 (R¹=CH₂(3-ClC₆H₄), R³=CH₃, and R¹⁵=CH₂CH₂CH₂CH₃).

Method J, Step 2:

Compound J3 (R 1 =CH $_2$ (3-ClC $_6$ H $_4$), R 3 =CH $_3$, and 10 R 15 =CH $_2$ CH $_2$ CH $_2$ CH $_3$) was prepared from J2 (R 1 =CH $_2$ (3-ClC $_6$ H $_4$), R 3 =CH $_3$, and R 15 =CH $_2$ CH $_2$ CH $_2$ CH $_3$) following the procedure described in Method H, Step 2.

The following compounds were prepared using similar method.

#	Structure	MW	Obs. m/e
726	NH H H	323	324

160

	-continued					-continued
#	Structure	MW	Obs.	5	#	Structure MW m
730	O NH NH NH NH NH	365	366	10	734	CI NH NH O $\frac{H}{N}$ H
731	CI	377	378	20	735	F 425 42
	O NH			30		Method K
732	CI NH NH	413	414	40	H ₂ N	HN R ¹⁵ SO ₂ Cl PS DIPEA
				50		R^{15}
733	CI NH NH	417	418	55		K2 R15 R15 R15 R15 R3 O R4 HN N R
	M H			60		NH

 $\label{eq:Method K, Step 1: A solution of propyl R$^{15}SO_2Cl\,(R$^{15}=Propyl)\,(1.5~eq)$ was added to a suspension of polystyrene diisopropylethylamine}$

K3

45

50

55

65

resin (18 mg, 3.45 mmol/g, 3 eq) and the free base of K1 prepared using method H (R¹=CH₂(3-ClC₆H₄) and R³=CH₃) (0.021 mmol) in 1:1 CH₃CN:THF. The suspension was agitated overnight. Polystyrene isocyanate resin (45 mg, 3 eq), polystyrene trisamine resin (40 mg, 6 eq) and a 1:1 mixture of CH₃CN:THF (0.5 mL) was added. The mixture was agitated for 6 h. The suspension was filtered and the filtrate was concentrated to afford K2 (R1=CH2(3-CIC6H4), R3=CH3, and R^{15} = $CH_2CH_2CH_3$).

Method K, Step 2:

Compound K3 $(R^1=CH_2(3-CIC_6H_4), R^3=CH_3, and$ R^{15} =CH₂CH₂CH₃) was prepared from K2 (R^1 =CH₂(3-ClC₆H₄), R^3 =CH₃, and R^{15} =CH₂CH₂CH₃) following the procedure described in Method H, Step 6.

The following compounds were prepared using similar method.

#	Structure	MW	Obs. m/e	20
736	NH II	316	317	
	NH H O O O O O O O O O O O O O O O O O O			25
				30

Method L

60
$$S = C = N$$

$$R^4 R^3$$

$$L1$$
(1) Boc NH
$$Z$$

$$H_2N$$

$$(2) TFA$$

(In the scheme, —Z—NH—C(O)R 16 — is equivalent to R 1 substituted by R 21 , or R 1 Substituted by alkyl-R 22 , wherein R 21 and R 22 are —N(R 15)C(O)R 16 and R 15 is H, and wherein

Z is optionally substituted alkylene-arylenen, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene, alkylene-cycloalkylene, alkylene-alkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)

Method L, Step 1:

A solution of L1 (R³=CH₃ and R⁴=CH₂CH(CH₃)₂) (1 eq) and Z=-para-methylene-benzyl) (1.05 eq) in CH₂Cl₂ was stirred at rt. The reaction solution was concentrated and purified via flash chromatography. The material was treated with 50% trifluoroacetic acid in CH₂Cl₂ for 30 min. The solution was concentrated. The residue was dissolved in 1 N HCl (10 mL) and washed with ether (2×). A saturated solution of Na₂CO₃ in H₂O was added to the aqueous phase until the solution became basic. The solution was extracted with CH₂Cl₂ (3×). The CH₂Cl₂ extracts were combined, dried over Na₂SO₄, filtered and concentrated to yield L2 (R³=CH₃, 3 =CH₂CH(CH₃)₂, Z=para-(CH₂)C₀H₄(CH₂)—).

Method L, Step 2:

Compound L3 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆H₄(CH₂)—, R¹⁶=CH₂CH₂CH₂CH₃) was prepared from L2 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆H₄ (CH₂)—) following the procedure described in Method I, Step 1.

Method L, Step 3:

Compound L4 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆NCH₂)—, R¹=CH₂CH₂CH₂CH₃) was prepared from (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆H₄ (CH₂)—, R¹⁶=CH₂CH₂CH₂CH₃) following the procedure described in Method A, Step 3.

The following compounds were prepared using similar method.

#	Structure	MW	Obs. m/e
743	O NH NH	316	317

	-continued		
#	Structure	MW	Obs. m/e
745	O NH NH	330	331
746	O NH NH	330	331
747	O NH NH	344	345
748	O NH NH	344	345

#	Structure	MW	Obs. m/e
749	O NH NH	358	359

	Continued		
#	Structure	MW	Obs. m/e
753	O NH NH	386	387
754	O NH NH	400	401
755	O NH NH	400	401
756	O NH NH	420	421

	-continued		
#	Structure	MW	Obs. m/e
757	O NH NH	434	435
758		434	435
759	O N NH NH	436	437
760	O NH NH	436	437

#	Structure	MW	Obs. m/e
761	O N NH NH	450	451
762	O NH NH	450	451
763	O N NH O NH	450	451
764	O NH NH	450	451

#	Structure	MW	Obs. m/e
765	NH NH	464	465
766		464	465
	O NH NH		
767		470	471
	O NH NH		
768	O NH NH	478	479

#	Structure	MW	Obs. m/e
769	O N NH NH	478	479

#	Structure	MW	Obs. m/e
772		492	493

#	Structure	MW	Obs. m/e
775		519	520

Method M

(In the scheme, —Z—NH—C(O)—NHR 15 — is equivalent to R 1 substituted by R 21 , or R 1 Substituted by alkyl-R 22 , wherein R 21 and R 22 are —N(R 16)—C(O)—NHR 15 and R 16 is H, and wherein Z is optionally substituted alkylene-arylenene, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-cycloalkylene, alkylene-cycloalkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene, alkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)

Method M, Step 1:

Compound M2 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆H₄(CH₂)—, R¹⁵=3,4-difluorophenyl) was prepared from M1 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆H₄ (CH₂)—) following the procedure described in Method J, Step 1.

Method M, Step 2:

Compound M3 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-20 (CH₂)C₆H₄(CH₂)—, R¹5=3,4-difluorophenyl) was prepared from M2 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆H₄ (CH₂)—, R¹5=3,4-difluorophenyl) following the procedure described in Method A, Step 3. NMR(CD₃OD) δ 7.45, m, 1H; δ 7.26, m, 4H; 7.24, m, 1H; δ 6.96, m, 1H; δ 4.8, m; δ 4.3, s, 25 2H; δ 1.69, m, 2H; δ 1.44, m, 1H; δ 1.37, s, 3H; δ 0.8, m, 3H; δ 0.63, m, 3H. ES LCMS (m/e) 430.27

The following compounds were prepared using similar method.

#	Structure	MW	Obs. m/e
778	O NH NH	331	332
779	H NH NH	359	360

	-continued		
#	Structure	MW	Obs.
780	O NH NH	359	360
781	NH NH NH	373	374
782	NH NH NH	373	374
783	O N NH NH	373	374

#	Structure	MW	Obs. m/e
784	H NH NH	373	374

#	Structure	MW	Obs. m/e
788		387	388

#	Structure	MW	Obs. m/e
791	H N NH NH	405	406

794 407	
O NH	408

#	Structure	MW	Obs. m/e
796		413	414

#	Structure	MW	Obs. m/e
799	HN O HN NH O	421	422
800	H N NH NH	421	422
801	O NH NH	421	422
802	H NH NH	421	422

#	Structure	MW	Obs.
803	NH ON NH NH	421	422
804	HN O HN NH	421	422
805	HN O HN NH	421	422

	-continued		
#	Structure	MW	Obs. m/e
806	O N NH NH	421	422
807	O H NH NH	423	424
808	O HN NH O NH	423	424
809	O NH NH	423	424

#	Structure	MW	Obs. m/e
810	O N NH NH	423	424

-continued				
#	Structure	MW	Obs. m/e	
813	H NH NH	427	428	
814	HN O HN NH	429	430	
815	F H NH NH	429	430	

#	Structure	MW	Obs. m/e
816	F O NH NH	429	430

#	Structure	MW	Obs. m/e
819	HN O HN NH O NH	432	433

#	Structure	MW	Obs. m/e
822	O N NH	435	436

#	Structure	MW	Obs.
825 O	HN. NH NH	435	436

436

	215 -continued		
#	Structure	MW	Obs. m/e
827	HN O HN NH O	435	436
828	NH NH NH	435	436
829	O H N	437	438

	-continued		
#	Structure	MW	Obs
830	O NH NH	437	438
831	O NH NH	437	438
832	O H NH NH	437	438
833	NH NH	437	438

#	Structure	MW	Obs. m/e
834	O N NH O NH	437	438

#	Structure	MW	Obs. m/e
836	HN O	439	440
837	F HN O	439	440
838	ONNH NH NH ONNH F NH ONNH	439 NH	440

	-continued		Obs.
#	Structure	MW	m/e
839	O NH NH	441	442
840	HN CI HN O	441	442
841	HN OO NH NH	441	442

#	Structure	MW	Obs. m/e
842	HN O HN NH	441	442

#	Structure	MW	Obs.
845	HN O HN NH	443	444

	-continued		
#	Structure	MW	Obs. m/e
847	HN O HN NH	447	448
848	O NH NH	449	450
849	$N = \underbrace{\hspace{1cm} \bigcup_{\substack{N \\ H}}^{O} \bigcup_{\substack{N \\ H}}^{N} NH}_{NH}$	450	451
850	O N NH NH	450	451

#	Structure	MW	Obs. m/e
851	N H NH NH	450	451
852	O N NH O NH NH	451	452
853	HN O HN NH	451	452

#	Structure	MW	Obs. m/e
854	O N NH NH O NH	451	452

	-continued		
#	Structure	MW	Obs. m/e
857	H N N N N N N N N N N N N	453	454
858	O NH NH	455	456
859	O N NH NH	455	456
860	F NH NH	455	456

457 458

-continued

#	Structure	MW	Obs. m/e
# 861	Structure HN NH NH	457	458

862

	-continued		
#	Structure	MW	Obs. m/e
863	HN O HN NH F	457	458
864	O NH NH	458	459
865	O NH NH	458	459

#	Structure	MW	Obs. m/e
866	O NH NH	460	461

	-continued		
#	Structure	MW	Obs. m/e
869	CI H H NH O NH NH	461	462
870	CI HN NH NH	461	462
871	CI H NH NH	461	462
872	CI NH NH	461	462

	-continued		
#	Structure	MW	Obs. m/e
873		461	462
874		463	464
875	O N NH NH	466	467
876	N N N N N N N N N N N N N N N N N N N	466	467

	-continued		
#	Structure	MW	Obs. m/e
877	HN O HN NH O NH	467	468
878	NH NH NH	469	470
879	N NH NH	469	470

#	Structure	MW	Obs. m/e
880	O NH NH	471	472

#	Structure	MW	Obs. m/e
883	N H N N N N N N N N N N N N N N	472	473

#	Structure	MW	Obs. m/e
886	CI CI NH NH	475	476

	-continued		
#	Structure	MW	Obs. m/e
889	CI CI NH NH NH	475	476
890	F F O NH NH	475	476
891	HN O	475	476

#	Structure	MW	Obs. m/e
892	$F \xrightarrow{F} O \xrightarrow{N} NH$	475	476

	-continued		
#	Structure	MW	Obs. m/e
895	H O NH NH	475	476
896	HN NH NH	477	478
897	H NH NH NH	477	478

#	Structure	MW	Obs. m/e
898	Structure HN O HN NH	MW 479	m/e 480
	ONH		

#	Structure	MW	Obs. m/e
900	N O N NH NH	480	481

#	Structure	MW	Obs. m/e
903	HN O HN NH	485	486

#	Structure	MW	Obs. m/e
905	HNO	485	486
	O NH NH		
906	NH NH NH	485	486
907	O NH NH	485	486
908	$\begin{array}{c} O \\ N \\$	489	490

#	Structure	MW	Obs. m/e
909	CI NH NH ON NH NH	489	490

#	Structure	MW	Obs. m/e
911	HN	491	492
	HN		
	O NH NH		
	F		

# Structure	MW	Obs. m/e
913 HN HN NH NH NH	F 493	494

#	Structure	MW	Obs. m/e
916	N N N N N N N N N N N N N N N N N N N	496	497

#	Structure	MW	Obs. m/e
919		497	498
	HN		
	N NH		
	O NH		

#	Structure	MW	Obs. m/e
922	O NH NH	501	502

#	Structure	MW	Obs. m/e
924	HN O NH NH F	502	503

	commed		Obs.
#	Structure	MW	Obs. m/e
926	HN O HN NH NH F	502	503
927	F O N NH NH NH NH	503	504
928	HN O HN NH NH	505	506

			Obs.
#	Structure	MW	m/e
929	HN O HN NH O NH	507	508
930	F F	507	508
	O N NH NH O NH	30,	500
931	CI HN NH NH	507	508

	Continued		
#	Structure	MW	Obs. m/e
932	O NH NH NH NH	509	510
933	HN H ON NH	509	510
934	CI CI NH	509	510
935	O NH NH	510	511

#	-continued	MW	Obs.
936	Structure H N N N N N N N N N N N N N N N N N N	MW 511	m/e 512
937		511	512
938	NH NH NH NH NH NH	514	515
	O NH NH		

#	Structure	MW	Obs. m/e
939	CI H N N N N N N N N N N N N N N N	515	516

	-continued		
#	Structure	MW	Obs. m/e
942	ON NH NH NH NH	519	520
943	N HN NH NH	522	523
944	$\begin{array}{c} O \\ N \\ H \end{array}$	523	524
945	CI NH NH	523	524

527 528

946 525 526 HN NH NH NH	#	Structure	MW	Obs. m/e
		HN NH		526

#	Structure	MW	Obs. m/e
948	CI CI HN NH ON NH NH	529	530

#	Structure	MW	Obs. m/e
951	CI NH NH	539	540
952	F F O H NH NH	543	544
953	CI HN O N NH NH NH F	545	546

	-continued		
#	Structure	MW	Obs. m/e
954	CI CI NH NH	545	546
955	NH NH NH	547	548
956	Br NH	549	550
957	$\begin{array}{c} O \\ N \\ N \\ N \end{array}$	553	554

#	Structure	MW	Obs. m/e
958	HN O HN NH O NH F	555	556

50

55

-continued

	Continued		
#	Structure	MW	Obs. m/e
960	CI CI HN O NH NH NH	559	560
961	ON NH NH	387	
	45		

Method N

(In the scheme, —Z—NH—S(O) $_2$ R¹⁶— is equivalent to R¹ substituted by R²¹, or R¹ Substituted by alkyl-R²², wherein R²¹ and R²² are —N(R¹⁶)—C(O)—NHR¹⁵ and R¹⁶ is H, and wherein Z is optionally substituted alkylene-arylenen, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene-alkylene, alkylene-cycloalkylene, alkylene-cy-65 cloalkylene-alkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene-alkylene, eroarylene, cycloalkylene or heterocycloalkylene)

Method N, Step 1:

Compound N2 $(R^3=CH_3, R^4=CH_2CH(CH_3)_2, Z=para (CH_2)C_6H_4(CH_2)$ —, R^{16} = $CH_2CH(CH_3)_2$) was prepared from N1 (R3=CH₃, R4=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆H_{4 5} (CH₂)—) following the procedure described in Method K, Step 1.

Method N, Step 2: Compound N3 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆H₄(CH₂)—, R¹⁶=CH₂CH(CH₃)₂) was prepared from N2 (R³=CH₃, R⁴=CH₂CH(CH₃)₂, Z=para-(CH₂)C₆H₄ (CH₂)—, R¹⁶=CH₂CH(CH₃)₂) following the procedure described in Method A, Step 3.

The following compounds were prepared using similar method

method.

#	Structure	MW	Obs. m/e
962		380	381
963	O NH NH	380	381
964	NH NH NH	394	395
965	O S N NH NH	394	395

#	Structure	MW	Obs. m/e
966	N	451	452
	O NH		
	NH		

55

-continued

#	Structure	MW	Obs. m/e
969	S O N NH NH	498	499

Method O

TBSO

TBSO

$$\frac{TBSCl}{imidazole}$$
 CH_2Cl_2

O1

 $\frac{BuLi}{THF}$
 -78° C.

 $\frac{SO_2}{BuLi}$
 $\frac{BuLi}{THF}$
 $\frac{THF}{-78^{\circ}}$ C.

О3

45 TBSO SO₂ Li⁺
$$O$$
 CH₂Cl₂ O CO O C.

TBSO SO₂CI
$$CH_2Cl_2$$
 CH_2Cl_2
 CH_2Cl_2

Method O, Step 1:

A solution of indole-6-methanol (400 mg, 2.72 mmol), tert-butyldimethylsilyl chloride (816 mg, 5.41 mmol) and imidazole (740 mg, 10.9 mmol) in $\mathrm{CH_2Cl_2}$ was stirred at rt. 65 overnight before the solvent was evaporated and residue chromatographed using ethylacetate/hexane to give product O2.

O11

Method O, Step 2:

To a solution of O2 (200 mg, 0.77 mmol) in THF (10 mL) at -78° C. was added butyl lithium (1.2 eq). The solution was stirred at -78° C. for 5 min and then warmed to rt. The reaction mixture was cooled to -78° C. and p-toluenesulfonyl chloride was added. The solution was warmed to rt and stirred overnight. The reaction was quenched with a saturated aqueous K_2CO_3 solution, extracted with ethyl acetate and CH_2Cl_2 . The crude material was purified via flash chromatography using ethylacetate/hexane to afford 360 mg of O3.

Method O, Step 3:

A solution butyl lithium (1.2 eq) was added to a solution of O3 (340 mg, 0.829 mmol) in THF (20 mL). The reaction mixture was stirred for 15 min at -78° C. then sulfur dioxide was bubbled through the solution for 15 min. Hexane (100 mL) was added to the reaction mixture. The reaction mixture was evaporated to afford O4 which was used in the next step without further purification.

Method O, Step 4:

To a solution of O4 (0.829 mmol) in CH₂Cl₂ cooled to 0° C. was added N-chlorosuccinimide (220 mg, 1.66 mmol). After 2 h of stirring, the solution was filtered through a Celite plug. The filtrate was concentrated to afford O5.

Method O, Step 5:

To a solution of O5 in anhydrous pyridine (3 mL) was added butyl amine (100 μL). The reaction was agitated at rt for 4 d. The reaction mixture was partitioned between 1 N HCl and CH₂Cl₂. The organic layer was separated and washed with 1 N HCl (3×). The organic solution was dried over Na₂SO₄, filtered and concentrated. The crude material was purified via flash chromatography using ethylacetate/hexane to yield O6.

Method O, Step 6:

To a solution of O6 (70 mg) in THF was added TBAF. The reaction was stirred at rt. before the reaction mixture was chromatographed using ethylacetate/hexane to afforded 50 mg of O7 (95%).

Method O, Step 7:

To a solution of O7 (50 mg) in CH₂Cl₂ (5 mL) was added thionyl chloride (1 mL) the reaction was stirred for 5 min and then evaporated to afford O8.

Method O, Step 8:

50

To a solution of O8 in $\mathrm{CH_3OH}$ (5 mL) was added sodium azide (50 mg). The solution was stirred at rt overnight and solvent evaporated. The residue was chromatographed using ethylacetate/hexane to afforded O9 after purification.

Method O, Step 9:

To a suspension of O9 (70 mg) in CH₃OH was added 1 eq HCl (aq) and palladium on carbon. The reaction mixture was hydrogenated at 1 atm for 20 min to yield 90 mg of crude product O10.

Method O, Step 10:

A solution of lithium hydroxide (30 mg) in $\rm H_2O$ was added to a solution of O10 (40 mg) in CH₃OH (3 mL). The reaction was stirred at rt for 2 h and an additional portion of LiOH (40 mg) was added and solution was stirred for 2 more hours. The

solvent was evaporated and residue chromatographed using ethylacetate/hexane to afforded O11.

Method P

$$R^{23}$$
 R^{23}
 R

Method P, Step 1:

A 300 mL of THF solution of 100 g of P1 (R²³=n-Pr) was added to a suspension of 38 g of LAH in 2 L of anhydrous THF at 0 C. The reaction mixture is stirred at r.t. for 1 h before 30 ml of H₂O, 90 ml of 15% NaOH was added at 0° C. The mixture was stirred at r.t. for one hour before Na₂SO₄ (anh) was added, the mixture was filtered, and the solution evapo- 45 rated to give a product which was dried under vacuo overnight. This product was dissolved in 600 ml of DCM and the solution was added into a solution of oxalyl chloride (37.3 ml) and DMSO (60.8 ml) in 1.4 L of DCM at -78° C. over 40 min before Diisopropylethylamine (299 ml) was added at -78° C. The reaction was allowed to reach -10° C. The reaction was quenched with 1 L H₂O at -10° C. and the mixture was extracted with DCM. After removal of solvent, P2 (R²³=Pr, 106 g) was obtained. The crude material was used for next step without purification.

$$R^3$$
 N
 O
 H_2N
 N
 DCM
 $P = 0,1,2$
 $P = 0,1,2$
 Q
 Q
 Q
 Q
 Q
 Q

Method P, Step 2:

To a 1.5 L DCM solution of P2 (R^{23} =Pr, 106 g) was added p-Boc-aminomethylbenzylamine (1.1 eq) and sodium triacetoxyborohydride (1.1 eq) and the reaction was stirred at r.t. overnight. The reaction was quenched with H_2O and content extracted with DCM. After removal of solvents the residue was chromatographed using a silica gel column eluted with 3% MeOH in DCM to give 42.5 g of P3 (R^{23} =Pr).

Method P, Step 3:

A 10 ml MeOH solution of P3 (R^{23} =Pr, 110 mg) was hydrogenated using Pd/C (5%, 11 mg) at 1 atm of hydrogen to give product P4 (R^{23} =Pr) after removal of solvent and catalyst.

Method P, Step 4:

To a 10 ml DCM solution of P4 at 0° C. (R₂₃=Pr) was added triphosgene (1.2 eq) and triethylamine (2.4 eq) and the solution was stirred at 0 C for 2 h before the reaction was extracted with DCM/H2O. After removal of the solvent, the residue was chromatographed using a silica gel column eluted with EtOAc/Hexane to give a white solid which was treated with 2N HCl in dioxane for 2 h. After removal of the solvent, compound P5 (R²³=Pr) as a white solid was obtained (80 mg). The following compounds were synthesized using similar methods:

Method Q

Method Q, Step 1

At room temperature, Q1 (R³=Me; R⁴=iBu) (1.00 g) and 40 Q8 (n=1, p=2, m=1) (1.24 g) in dichloromethane (30 mL) were stirred for 42 h. This mixture was concentrated in vacuo to give an amber oil which was purified on a column of silica gel (200 mL) eluted with ethylacetate/hexane to give Q2 (n=1, p=2, m=1, R³=Me; R⁴=iBu), a colorless oil (1.59 g).

Method Q, Step 2

Compound Q3 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=iBu) was prepared from Q2 (n=1, p=2, m=1, R³=Me; R⁴=iBu) using method similar to method A step 3.

Method Q, Step 3

Compound Q3 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=iBu) (1.37 g) in anhydrous dichloromethane (25 mL) was treated with di-tert-butyl dicarbonate (0.68 g, 1.1 equiv.) and diisopropylethylamine (0.66 mL, 1.1 equiv.). The resulting solution was stirred at room temperature for 20 h before it was diluted with dichloromethane and washed with 1N hydrochloric acid. The dried dichloromethane solution was concentrated in vacuo to give a colorless film (1.32 g) which was purified on a column of silica gel (125 mL) and eluted with hexane:ethyl acetate to give compound Q4 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=i-Bu) as a white foam (0.74 g).

Method Q, Step 4

Compound Q4 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=^jBu) (0.540 g) in absolute EtOH (20 mL) was hydrogenated with 10% Pd/C (0.400 g) at 1 atm for 2 h. The reaction mixture was filtered and the filtrate was concentrated in vacuo to give Q5 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=^jBu) as a colorless oil (0.35 g).

Method Q, Step 5

Compound Q5 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=iBu) (0.012 g) and HOBt (0.005 g) dissolved in acetonitrile (0.8 mL) and tetrahydrofuran (0.25 mL) was treated with EDC resin (0.080 g, 3 eq., 1.53 mmol/g) in a microtiter plate well followed by addition of a 1M dichloroethane solution (40 uL, 125 eq.). After the well was capped and shaken for 18 h, the mixture was filtered and the resin washed with acetonitrile (0.5 mL). The combined solution was treated with Trisamine resin (0.050 g, 6 eq., 4.23 mmol/g) and Isocyanate resin (0.067 g, 3 eq., 1.53 mmol/g) for 18 h before the solution was filtered and the solvent was removed in vacuo to give Q6 (n=1, p=2, m=1, R²=H, R³=Me; R⁴='Bu, R¹⁵=Me).

Method Q, Step 6.

A dichloromethane solution (1.0 mL) of Q6 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=¹Bu, R¹⁶=Me) was mixed with trifluoroacetic acid (1.0 mL) and the solution was shaken for 2 h before it was concentrated. Diethyl ether (0.5 mL) was added and then concentrated in vacuo to give a residue, which was purified on a Prep LCMS unit to give Q7 (=1, p=2, m=1, R2=H, R₃=Me; R₄=iBu, R₁₅=Me). NMR (CDCl₃): δ 8.38, br, 2H; δ 4.56, m, 1H; δ 3.79, m, 1H; δ 3.57, m, 2H; δ 2.99, m, 1H; δ 2.48, m, 1H; δ 2.04, 5, 3H; δ 1.95, m, 1H; δ 1.5-1.8, m, 5H; δ 1.5, s, 3H; 1.25, m, 2H; δ 0.95, m, 3H; δ 0.85, m, 3H. ES_LCMS (m/e) 309.17.

The following compounds were prepared using similar methods:

#	Structure	MW	Obs. m/e
971	O	308	309
	O NH NH		
972	o N	308	309
	O _N N _N N _H		
	NH		
973		310	311
	HN NH NH		
	O NH		
974	O	322	323
	N NH		
	ONH		
	\		

#	Structure	MW	Obs. m/e
975	NH NH NH	324	325
976	O NH NH	334	335
977	O N NH NH	336	337
978	O N NH NH NH	348	349

#	Structure	MW	Obs. m/e
979	O NH NH	348	349
980	O HN NH NH	0	351
981		350	351
982	O NH NH	350	351
983	O N NH	360	361

#	Structure	MW	Obs. m/e
984	O NH NH	360	361

#	Structure	MW	Obs.
987	O NH NH	364	365
988	O NH NH	364	365
989	O NH NH	364	365
990	O NH NH	370	371

	-continued	
#	Structure	Obs. MW m/e
991	O NH NH	370 371
992	O NH NH	376 377
993	O NH NH	376 377
994	O NH NH	376 377

#	Structure	MW	Obs. m/e
995	O N NH NH	378	379

	-continued		
#	Structure	MW	Obs. m/e
998	O NH NH	378	379
999		379	380

#	Structure	MW	Obs. m/e
1001	O NH NH	384	385

#	Structure	MW	Obs. m/e
1004	O NH NH	388	389
1005	O NH NH	389	390
1006	O NH NH	390	391
1007	O NH NH	390	391

	-continued		
#	Structure	MW	Obs. m/e
1008	O NH NH O NH	390	391
1009	O NH NH	390	391
1010	O HN H N O	390	391
1011	O NH NH	390	391

	-continued		
#	Structure	MW	Obs. m/e
1012	S N N NH NH	390	391
1013	O NH NH	390	391
1014	O NH NH	390	391
1015	O NH NH NH NH	392	393

	-continued		
#	Structure	MW	Obs. m/e
1016	O NH NH	392	393
1017	O NH NH	392	393
1018	HN HN H	394	395
1019	O NH NH	398	399

#	Structure	MW	Obs.
1020	O NH	398	399
	NH		

#	Structure	MW	Obs. m/e
1023	O NH NH	398	399

MW	m/e
400	401
	400

-continued			
#	Structure	MW	Obs. m/e
1028	O NH NH NH NH NH	400	401
1029	O N NH NH	400	401
1030	O NH NH	400	401
1031	O NH NH	400	401

#	Structure	MW	Obs. m/e
1032	Structure O NH NH NH NH NH NH NH NH NH	102	m/e 403

#	Structure	MW	Obs. m/e
1035	O NH NH	404	405
1036	S N N NH NH	404	405
1037		404	405

	-continued		Ob-
#	Structure	MW	Obs. m/e
038	O NH NH	404	405
039	NH NH NH	404	405
040	O NH NH	404	405
1041	CI O NH NH	404	405

	-continued		
#	Structure	MW	Obs. m/e
1042	O NH NH	409	410
1043	O NH NH	410	411
1044	O NH NH	0	411
1045	O NH NH	410	411

	-continued		
#	Structure	MW	Obs. m/e
1046		412	413
1047	O NH NH	412	413
1048	N NH NH	412	413

#	Structure	MW	Obs m/e
1049	O NH NH	414	415

	-continued		Oba
#	Structure	MW	Obs m/e
1052		414	415
1053	NH ONH NH NH	414	415
1054	O NH NH NH	414	415

#	Structure	MW	Obs. m/e
1055	O NH NH	414	415

			Obs.
#	Structure	MW	m/e
1058	O NH NH	417	418
1059	O NH NH NH NH NH	418	419
1060	O NH NH	418	419

	-continued		
#	Structure	MW	Obs. m/e
1061	N NH NH	418	419
1062	S HN HN H	418	419
1063	CI NH NH	418	419
1064	O NH NH NH	420	421
1065	O NH NH	423	424

	-continued		
#	Structure	MW	Obs. m/e
1066	O NH NH	424	425
1067	O NH NH	424	425
1068	O NH NH NH NH NH	426	427

#	Structure	MW	Obs. m/e
1069	Structure	426	427
	N NH NH NH		
1070		426	427
	N—————————————————————————————————————		
	N NH		
1071	O HN H N O	426	427
1072		426	427
	NH NH NH		

	-continued		
#	Structure	MW	Obs. m/e
1073		427	428
1074	O NH NH	428	429
1075	N NH NH NH	428	429

#	Structure	MW	Obs. m/e
1076	O NH NH	428	429
1077	O NH NH	428	429
1078		428	429
1079	O NH NH O NH	430	431

#	Structure	MW	Obs. m/e
1080	O NH O NH NH	430	431

430 431

	-continued		
#	Structure	MW	Obs. m/e
1082	S NH NH NH	432	433
1083	HN HN O	432	433
1084	O HN HN H	432	433
1085	O NH NH NH	432	433

#	Structure	MW	Obs. m/e
1086	O NH NH	432	433

	-continued		
#	Structure	MW	Obs. m/e
1089	O NH NH	438	439
1090	CI NH NH	438	439
1091	F F N NH NH	438	439
1092	O NH NH	438	439

#	Structure	MW	Obs. m/e
1093	O NH NH NH	440	441
1094	HN	440	441
1095		440	441
	HN HN O		
1096	O NH NH	440	441

#	Structure	MW	Obs.
1097		442	443
	N		
	O NH NH		
.098		442	443
	N		
	O NH NH		
1099		442	443
	NH NH NH		

#	Structure	MW	Obs. m/e
1100	ON HIN H	442	443

	-continued		
#	Structure	MW	Obs. m/e
1103	S O NH NH	444	445
1104	NH NH NH	444	445
1105	CI HN H N O	446	447
1106	O NH NH	446	447

#	Structure	MW	Obs. m/e
1107	O NH NH	446	447

#	Structure	MW	Obs. m/e
1110	O N NH NH	452	453

	-continued		
#	Structure	MW	Obs. m/e
1113	O NH NH	456	457
1114	O HN HN HN O	456	457
1115	O NH NH	456	457
1116	S HIN H	458	459

	-continued		
#	Structure	MW	Obs. m/e
1117	O NH NH	460	461
1118	O NH NH	460	461
1119		460	461
1120	NH NH	460	461

#	Structure	MW	Obs. m/e
1121	O NH NH	462	463

	-continued		
#	Structure	MW	Obs. m/e
1124	O NH NH	462	463
1125	O NH NH	462	463
1126	O NH NH NH NH NH	464	465
1127		466	467

#	Structure	MW	Obs. m/e
1128	O NH NH	466	467

	-continued		
#	Structure	MW	Obs. m/e
1131		474	475

	continued		
#	Structure	MW	Obs. m/e
1134	O NH NH O NH	476	477
1135	O NH O NH NH NH	478	479
1136	O NH NH	482	483

	-continued		
#	Structure	MW	Obs. m/e
1137	O NH NH	482	483
1138	HN NH NO	482	483
1139	N NH NH NH	488	489
1140	NH NH	490	491

#	Structure	MW	Obs. m/e
1141	HN NH O N O F	500	501

#	Structure	MW	Obs. m/e
1145	HN HN H	504	505
1146	O NH NH	504	505
1147	O N NH NH	511	512
1148	O NH NH	512	513

#	Structure	MW	Obs. m/e
1149	O NH NH	512	513

	-continued		
#	Structure	MW	Obs. m/e
1152	O NH NH	520	521
1153		520	521
1154	O NH NH	522	523

	Continued		Ol-
#	Structure	MW	Obs. m/e
1155		522	523
1156	O N NH NH	536	537
1157	ON NH NH	536	537

#	Structure	MW	Obs. m/e
1158		536	537
1159	S NH NH	538	539
1160	S N NH NH NH	538	539

#	Structure	MW	Obs. m/e
1161	O O O NH NH NH Br	540	541

	-continued		
#	Structure	MW	Obs. m/e
1164	O NH NH	546	547
1165	O NH NH	546	547
1166	O NH NH	550	551

#	Structure	MW	Obs.
1167	O NH NH	550	551
1168		569	570
1169	NH NH NH NH NH NH	582	583

#	Structure	MW	Obs. m/e
1170		582	583

	-continued		
#	Structure	MW	Obs. m/e
1172		584	585
1173	NH NH NH Br	594	595
1174	O NH NH	596	597

#	Structure	MW	Obs. m/e
1175	O NH NH O NH	596	597

Method R

Method R, Step 1.

A solution of R¹ (n=1, p=2, m=1, R²=H, R³=Me; R⁴='Bu) (0.010 g) in acetonitrile (0.85 mL) and dichloroethane (0.15 mL) was put into a microtiter plate well followed by addition of 0.12 ml of 0.5M phenylisocyanate solution in dichloroethane. The well was sealed and the plate shaken for 20 h before the mixture was filtered and the solid washed with acetonitrile (0.5 ml). The combined solution was treated with Trisamine resin (0.050 g, 6 eq., 4.23 mmol/g) and Isocyanate resin (0.067 g, 3 eq., 1.53 mmol/g) and the mixture was shaken for 18 h. The mixture was filtered and the solution was evaporated to give the R2 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=ⁱBu and R¹⁵=Ph).

Method R, Step 2.

55

 R^3 N(CO) N = 0,1,2 N = 0,1,2

Procedure similar to Method Q, step 6 was used for the transformation of R2 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=ⁱBu and R¹⁵=Ph) to R3 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=ⁱBu and R¹⁵=Ph).

The following compounds were prepared using similar methods:

#	Structure	MW	Obs. m/e
1176	O NH ₂ NH NH NH NH	309	310
1177	ONH ₂ ONH ONH NH	309	310
1178	H ₂ N H HN NH	311	312
1179	H_2N N H N	325	326
1180	H_2N H_1 H_2 H_3 H_4 H_4 H_5	337	338

#	Structure	MW	Obs. m/e
1181		346	347

	continued		
#	Structure	MW	Obs. m/e
1185	O NH NH NH NH	365	366
1186	O NH NH	365	366
1187	O NH NH	365	366
1188	HN HN NH	367	368

#	Structure	MW	Obs. m/e
1189	O NH NH	377	378

	Continued		
#	Structure	MW	Obs. m/e
1193	NH NH NH	393	394
1194	HN HN H	395	396
1195	O NH NH NH NH	399	400
1196	O N NH	399	400

			OI
#	Structure	MW	Obs. m/e
1197	O NH NH	399	400
1198	O NH NH	399	400
1199	O NH NH	399	400
1200	NH NH NH	401	402
1201	F O NH NH	403	404

	Continued		
#	Structure	MW	Obs. m/e
1202	F NH NH	403	404
1203	N HN HN H	407	408
1204	O NH NH	407	408
1205	N N N N N N N N N N N N N N N N	410	411
1206	N N N N N N N N N N N N N N N N N N N	410	411

1207 413 414	#	Structure	MW	Obs. m/e
O NH NH	1207	O NH NH NH		

#	Structure	MW	Obs. m/e
1210	O NH NH	415	416
1211	O NH NH	415	416
1212		415	416
1213	F NH NH	417	418
1214	CI O NH NH	419	420

#	Structure	MW	Obs. m/e
1215	CI NH NH	419	420

#	Structure	MW	Obs. m/e
1219		425	426
1220	ON NH NH	427	428
1221		427	428
1222	HN HN H	429	430
1223	O N NH NH	429	430

	-continued		
#	Structure	MW	Obs. m/e
1224	H ₂ N NH NH	431	432
1225	H ₂ N O NH O NH	431	432
1226	CI NH NH	433	434
1227	O NH NH	435	436

	-continued		
#	Structure	MW	Obs. m/e
1228	NH HN H	441	442
1229	O NH NH	441	442
1230	O NH NH	441	442
1231	F O N NH O NH	445	446

#	Structure	MW	Obs. m/e
1232	CI NH NH	449	450

1233 F
$$\frac{H}{N}$$
 $\frac{1}{N}$ $\frac{1}{N}$

#	Structure	MW	Obs. m/e
1236	CI NH NH	453	454

#	Structure	MW	Obs. m/e
1240		457	458
1241	O NH NH	461	462
1242	Br O NH NH	463	464
1243	CI NH NH	467	468
1244	CI NH NH	467	468

	-continued		
#	Structure	MW	Obs. m/e
1245	F N N N N N N N N N N N N N N N N N N N	471	472
1246	O NH NH	475	476
1247	HN HN H	477	478
1248	O NH NH	477	478

#	Structure	MW	Obs.
1249	O NH NH	487	488

#	Structure	MW	Obs. m/e
1252	CI NH NH	491	492

Method S

$$R^{3}$$

NSO₂ R^{15}

NSO₂ R^{15}

Boc

 R^{2}

S2

25 Method S, Step 1.

A solution of S1 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=iBu) (0.010 g) in acetonitrile (0.85 mL) and dichloroethane (0.15 mL) was put into a microtiter plate followed by addition of DIPEA-MP resin (0.030 g, 4 eq) and phenylsulfonyl chloride in dioxane (1 M, 45 μL, 0.045 mmol. The well was capped and shaken for 18 h before it was filtered and residue washed with acetonitrile (0.5 mL). The combined solution was treated with Trisamine resin (0.040 g, 6 eq., 4.23 mmol/g) and Isocyanate resin (0.060 g, 3 equiv., 1.53 mmol/g) and shaken for 18 h before the mixture was filtered and the solvent removed to give S2 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=iBu and R¹5=Ph).

Method S, Step 2.

50

55

Procedure similar to Method Q, step 6 was used for the transformation of S2 to S3 (n=1, p=2, m=1, R^2 =H, R^3 =Me; 60 R^4 = i Bu and R^{15} =Ph).

The following compounds were prepared using similar methods:

	477		
#	Structure	MW	Obs. m/e
1253	O S NH	344	345
1254	O N NH	344	345
1255	O NH NH	358	359
1256	O NH NH	358	359

	-continued		
#	Structure	MW	Obs. m/e
1257		360	361
1258	O NH NH	372	373
1259	O N NH NH	372	373
1260	O O HN HN N	386	387

	-continued		
#	Structure	MW	Obs. m/e
261	O N NH O NH	406	407
2	`	406	407
	O NH NH		
53		406	407
	O NH NH		
264		412	413
	S N NH NH		

	continued		
#	Structure	MW	Obs. m/e
1265	O N H N N N N N N	416	417
1266	O NH NH	420	421
1267	O NH NH	420	421
1268		420	421

#	Structure	MW	Obs. m/e
1269	O N NH NH	420	421
1270	O NH NH	420	421
1271	O N NH NH	420	421
1272	F O S N NH	424	425
1273	F O NH NH	424	425

#	Structure	MW	Obs. m/e
1274	O S N NH NH	424	425

	-continued		
#	Structure	MW	Obs. m/e
1278	O NH NH	434	435
1279	O S N NH NH	436	437
1280	O N NH NH	436	437
1281	O N NH NH NH	438	439
1282	CI OS NH NH	440	441

	-continued		
#	Structure	MW	Obs. m/e
1283	CI NH NH	440	441
1284	O N NH NH	440	441
1285	F O S N NH NH	442	443
1286	F O S N NH NH	442	443
1287	F O S N NH NH	442	443

#	Structure	MW	Obs.
1288	F NH NH	442	443
1289	F O N NH NH	442	443
1290	O N NH NH	446	447
1291	O NH NH	448	449
1292	O NH NH	448	449

	497 -continued		
#	Structure	MW	Obs. m/e
1293	O N NH NH	448	449
1294	CI O S N	454	455

#	Structure	MW	Obs. m/e
1297	CI NH NH	458	459
1298	F O S N O NH NH	458	459
1299	CI NH NH	458	459
1300	O N NH NH	462	463
1301		464	465

	-continued		
#	Structure	MW	Obs. m/e
1302	O N NH NH	466	467
03	O NH NH	466	467
)4		466	467
305	O NH NH	466	467

	-continued		
#	Structure	MW	Obs. m/e
1306	O O S N NH NH	470	471
1307	O S N CI	474	475
1308		474	475
1309	O S N NH NH	474	475
1310	F F O NH NH	474	475

#	Structure	MW	Obs. m/e
1311	CI OS N NH NH	474	475
1312	CI O S N NH NH	474	475
1313	CI O S N NH NH	474	475
1314	CI OS N NH	474	475
1315	CI NH NH	474	475

	continued		
#	Structure	MW	Obs. m/e
1316	CI NH NH	474	475
1317	O N NH NH	476	477
1318	CI NH NH	480	481
1319	O N NH NH	482	483
1320	O N NH NH	484	485

	-continued		
#	Structure	MW	Obs.
1321	Br O N NH	484	485
1322	CI O N NH NH O NH	488	489
1323	O N NH NH	490	491
1324	F O NH NH	490	491

#	Structure	MW	Obs. m/e
1325	O NH NH	492	493

	-continued		
#	Structure	MW	Obs. m/e
1329	CI OS N NH	508	509
1330	CI O S N NH NH	508	509
1331	F F F O NH NH	542	543
1332	F F O N O N NH O NH NH	557	558

Method T

Method T, Step 1.

To a microtiter plate well containing 1 ml solution of T1 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=iBu) in DCM (0.010 g) and R¹5C(O)R¹6 (5 equiv, R¹5=H, R¹6=Ph) was added Sodium cyanoborohydride in dichloroethane (14.3 mg/mL, 2 equiv.). The well was capped and shaken for 20 h before MP-TsOH Resin (100 mg, 1.29 mmol/g) was added to the well followed by additional MP-TsOH resin (50 mg) after 2 h. After the mixture was shaken for another 1 h, the mixture was filtered and the resin washed with dichloroethane (1 mL) (3×), then MeOH (1 mL) (2×). The resin was treated with 7N ammonia in MeOH (1 mL) for 30 min (2×) followed by filtration and evaporation of solvent to give T2 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=′Bu and R¹⁵=Ph and R¹⁶=H).

Method T, Step 2.

Procedure similar to Method Q, step 6 was used for the transformation of T2 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=iBu and R¹⁵=Ph and R¹⁶=H) to T3 (n=1, p=2, m=1, R²=H, R³=Me; R⁴=iBu and R¹⁵=Ph and R¹⁶=H).

The following compounds were prepared using similar $_{50}$ methods:

#	Structure	MW	Obs. m/e	55
1333	O NH NH	348	349	60
				65

#	Structure	MW	Obs. m/e
1334	O NH NH	350	351
1335	O NH NH	350	351
1336	O NH NH	356	357
1337	O NH NH	362	363
1338	O NH NH	370	371
1339	O NH NH	384	385

20

400 401

446 447

-continued

-continued

#	Structure	MW	Obs. m/e	5	# 1343	
1340		384	385		15 15	
	N NH			10		
	ONH			15		
	`					

Method U

25 HN N Pd(dppf)Cl₂ toluene,
$$H_2O$$
 K_2CO_3 microwave

30 U1

R²¹B(OH)₂ Pd(dppf)Cl₂ toluene, H_2O K_2CO_3 microwave

In a microwave vial was charged U1 (R²=H; R³=i-Bu, R⁴=Me) (0.025 g) in toluene (4 mL), potassium carbonate (0.035 g), Pd(dppf)Cl₂ (0.020 g). water (0.02 mL) and R²¹B (OH)₂ (R²¹=m-Methoxyphenyl) (3 eq.) were placed. The vial was placed in a microwave for 10 min. at 150° C. The reaction mixture was diluted with dichloromethane and extracted with 2.5N NaOH. The dried (MgSO₄) dichloromethane solution was concentrated in vacua to give a brown residue which was purified via a RP Prep LCMS system to give product U2 (R²=H; R³=iBu: R⁴=Me; R²¹=m-methoxyphenyl).

U2

The following compounds were prepared using similar methods:

#	Structure	MW	Obs. m/e
1344	O NH NH	279	280

#	Structure	MW	Obs. m/e
1345	O NH NH	285	286
1346	O NH NH	293	294
1347	NH NH S	299	300
1348	NH NH NH S	299	300
1349	NH NH NH	304	305
1350	O NH NH	309	310

			Obs.
#	Structure	MW	m/e
1351	O NH NH CI	313	314
1352	NH NH	318	319
1353	NH NH O	323	324
1354	O NH NH	323	324
1355	N NH NH	323	324
1356	O NH NH	329	330

	-continued		
#	Structure	MW	Obs. m/e
1357	NH NH S	335	336
1358	NH NH S	335	336
1359	O NH NH NH	337	338
1360	CH ₃	343	344
1361	O NH F F	347	348

	-continued		
#	Structure	MW	Obs. m/e
1362	O NH NH CI	347	348
1363	ON NH NH CI	347	348
1364	NH Cl	347	348
1365	NH NH CI	347	348
1366	O NH NH	349	350

#	Structure	MW	Obs. m/e
1367	O NH NH	349	350
1368	ON NH NH2	350	351
1369	O NH NH	351	352
1370	O NH NH	352	353
1371	O NH NH	357	358

#	Structure	MW	Obs. m/e
1372	HN NH	359	360
1373	O NH NH	360	361
1374	NH O NH	360	361
1375	O NH NH	360	361
1376	O NH NH	360	361

#	Structure	MW	Obs. m/e
1377	N NH NH	360	361

	-continued		
#	Structure	MW	Obs. m/e
381	O NH NH	365	366
382	O NH NH	365	366
383	O NH NH	366	367
1384	HN	371	372

#	Structure	MW	Obs. m/e
1385	F NH NH	371	372
1386	F NH NH	371	372
1387	HN NH NO NH NH NO NH	372	373
1388	HN NH NO	372	373

#	Structure	MW	Obs. m/e
1389	CI	375	376
1390	O NH NH	377	378
1391	O NH NH	377	378
1392	O NH NH	377	378

			Obs.
1393	Structure	MW 377	m/e 378
1393	O NH NH	377	376
1394	O N NH	379	380
1395	O NH NH	379	380
1396	HN	380	381

	-continued		
#	Structure	MW	Obs. m/e
1397	HN NH NO CI	381	382
398	HN	383	384
399	H_2N	384	385
1400	HN	385	386

	-continued		
#	Structure	MW	Obs. m/e
1401	HN NH	385	386
1402	O NH NH	386	387
1403	HN NH	387	388
1404	O NH NH	389	390
1405	O NH NH	389	390

	-continued		Ob
#	Structure	MW	Obs. m/e
1406	ON NH ONH	392	393
1407	ON NH O	395	396
1408	F F NH NH	403	404
1409	F NH NH	403	404
1410	NH NH NH	405	406

	-continued		
#	Structure	MW	Obs. m/e
1411	O NH	406	407
1412	HN	413	414
1413	HN	419	420
1414	NH NH NH	497	498
1415	HNNN	398	TBD

#	Structure	MW	Obs. m/e
1416	HN NH	399	TBD

Method V

Boc
$$\mathbb{N}$$
 \mathbb{H} \mathbb{O} \mathbb{N} $\mathbb{N$

Boc
$$\mathbb{R}^3$$
 \mathbb{R}^4 \mathbb{R}^4 \mathbb{R}_1 \mathbb{R}_1 \mathbb{R}_1 \mathbb{R}_2 \mathbb{R}_2

Method V, Step 1:

Compound V1 ($R^3=R^4=Me$) (14.76 mmole), EDCl (14.76 mmole), HOAt (14.76 mmole), and DIEA (14.76 mmole) 55 were mixed with 36 ml DCM. This mixture was stirred at RT for 15 min before 3-chlorobenzylamine was added. After the reaction solution was stirred at RT overnight, it was washed with sodium carbonate (3×), water, 1N HCl (4×), and aq sodium bicarbonate and dried over anhydrous sodium sulfate. 60 The solvent was evaporated and the residue was purified on flash column to give the amide product V2 ($R^1=3$ -chlorobenzyl; $R^3=R^4=Me$).

Method V, step 2

Compound V2 (R¹=3-chlorobenzyl; R³=R⁴=Me) (8.33 65 mmole) was dissolved in 35 ml anhydrous DCM, and cooled to 0-5° C. Thiophosgene (9.16 mmole) in 10 ml DCM was

added dropwise under N₂ followed by addition of DIEA (11.96 mmole). The solution was stirred in ice bath for 0.5 h before the reaction mixture was washed with saturated sodium bicarbonate (3×), brine, and dried over anhydrous sodium sulfate. The solvent was evaporated and residue purified on flash column using ethylacetate/hexane to give the thiohydantoin V3 (R¹=3-chlorobenzyl; R³=R⁴=Me).

Method V, step 3:

40

The thiohydantoin V3 (R¹=3-chlorobenzyl; R³=R⁴=Me) was treated with t-butyl hydroperoxide and ammonium hydroxide in MeOH at RT for 48 h to give compound V4 (R¹=3-chlorobenzyl; R²=H; R³=R⁴=Me).

The following compounds were prepared using similar 35 method.

#	Structure	MW	Obs. m/e
1417	O NH NH	251	252

-continued	

#	Structure	MW	Obs. m/e
1419	Cl	293	294

5 1422 CI 371 372 10 NH NH 15		#	Structure	MW	Obs. m/e
O NH NH	5	1422	CI	371	372
NH	10				
o'	15		O NH		

Method W

HO
$$R_3$$
 N
 R^2
 N
 N
 N
 N

Compound W1 obtained using method A (n=1, R^2 =m-Cl-Bn, R^3 =Me) was hydrolyzed to W2 (n=1, R^2 =m-Cl-Bn, R^3 =Me) using two equivalent of LiOH in MeOH. The following compounds were synthesized in similar fashion:

#	Structure	MW	Obs. m/e
1423	OH OH	295	296

-continued	

#	Structure	MW	Obs. m/e
1424	HO HN NH	311	312

(In the scheme, $-Z-NH-C(O)-N(R^{16})(R^{17})$ — is equivalent to R1 substituted by R21, or R1 Substituted by

alkyl-R²², wherein R²¹ and R²² are —NH—C(O)—N(R¹⁶) (R¹⁷) and R¹⁵ is H, and wherein Z is optionally substituted alkylene-arylene, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene-alkylene, alkylene-cycloalkylene, alkylene-cycloalkylene-alkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene-alkylene, arylene, heteroarylene, cycloalkylene or heterocycloalky-10 lene)

Method X, Step 1:

To a mixture of the amine X1 obtained using method L $(R^3=Me; R^4=^i-Bu; Z=para-(CH_2)C_6H_4(CH_2)-(10 mg) in$ 15 DCM and sat. NaHCO₃ (1:1 by volume) was added triphosgene (0.33 eq) at r.t. The solution was stirred vigorously for 40 minutes before the organic layer was separated and dried over anhydrous Na2SO4. The organic solution was evaporated to 20 give compound X2 (R3=Me; R4=i-Bu; Z=para-(CH2)C6H4 (CH_2) —).

Method X, Step 2:

Compound X3 (R¹⁵=H; R¹⁶=cyclopropylmethyl; R³=Me; $R^4=iBu; Z=para-(CH_2)C_6H_4(CH_2)$ was prepared from X2 $(R^3=Me; R^4=i-Bu; Z=para-(CH_2)C_6H_4(CH_2)-)$ using method similar to method M, step 1.

Method X, Step 3:

Compound X4 (R¹⁶=H; R¹⁷=cyclopropylmethyl; R²=H; R^3 =Me; R^4 = i Bu; Z=para-(CH₂)C₆H₄(CH₂)—) was prepared from X3 (R¹⁶=H; R¹⁷=cyclopropylmethyl; R²=H; R³=Me; R⁴=ⁱBu; Z=para-(CH₂)C₆H₄(CH₂)—) using method similar ³⁵ to method A Step 3. NMR (CD₃OD): δ 7.25, s, 4H; δ 4.8, m, 2H; δ 4.25, s, 2H; δ 2.9, m, 2H; δ 1.68, m, 2H; δ 1.44, m, 1H; δ 1.36, s, 3H; δ 0.9, m, 1H; δ 0.82, m, 3H; δ 0.66, m, 3H; δ 0.4, m, 2H; δ 0.12, m, 2H. ES LCMS (m/e) 386.1.

The following compounds were prepared using a similar method.

	-continued		
#	Structure	MW	Obs. m/e
1429	HIN H O NH NH	401	402
1430	HN H NH NH	401	402
1431	HN O HN NH	415	416

#	Structure	MW	Obs. m/e
1432	HN H O NH NH	427	428
1433	O N NH	435	436
1434	HN H NH ON NH	435	436

449 450

-continued

#	Structure	MW	Obs. m/e
1435	N O NH NH	443	444

1436

#	Structure	MW	Obs. m/e
1437	HN H	463	464

#	Structure	MW	Obs. m/e
1440	O NH NH	496	497

	-continued		
#	Structure	MW	Obs. m/e
1443	O NH NH	518	519
1444	O NH NH	518	519
1445		524	525

	-continued		
#	Structure	MW	Obs. m/e
1446	O NH NH	524	525
1447	O NH NH	526	527
1448		532	533

	-continued		
#	Structure		Obs. m/e
1449	O NH NH	533	534
1450	O NH NH	537	538
1451	O NH CI	537	538

#	Structure	MW	Obs. m/e
1452	O NH NH	545	546

1455 572 573 NH NH NH			
1456 NH	# Structure	MW	Obs. m/e
	O NH	572	573
		598	599

Method Y

Y3

-continued

(In the scheme,

45

ОН

NH₄OH/MeOH

$$O \underbrace{\begin{array}{c} H \\ N \\ N \end{array}}_{Z} R^{23}$$

 R^4

35

578 -continued

 $(R^{16})(R^{17})$ and R^{15} and R^{16} form a ring as defined above, and wherein Z is optionally substituted alkylene-arylenen, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-cycloalkylene, alkylene-cycloalkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)

Method Y, Step 1:

The reaction mixture of compound Y1 obtained from 10 Method L (R³=Me; R⁴=i-Bu; Z=para-(CH₂)C₆H₄(CH₂)—) (0.1639 mmole), Y2 (R²³=H; R²³=Pr) (0.1967 mmole), PS-EDC resin (0.4917 mmole) and HOBT (0.2459 mmole) in 3.5 ml of mixture of THF, MeCN and DMF (1:1:0.3) was shaken overnight at RT before 6 eq of PS-trisamine resin 3 eq of PS-isocyanate resin were added. After 6 hrs the reaction mixture was filtered and the resin was washed with THF, DCM and MeOH. The combined filtrate was evaporated and the crude was treated with 40% TFA in DCM for 40 min before the solvent was evaporated and residue purified on RP HPLC system to give product Y3 (R³=Me; R⁴=i-Bu; Z=para-(CH₂) $C_6H_4(CH_2)$ —, R²³=H; R²³=Pr).

Method Y, Step 2:

The reaction solution of Y3 (R^3 =Me; R^4 =i-Bu; Z=para- $(CH_2)C_6H4CH_2)$ —, R^{23} =H; R^{23} =Pr) (0.030 mmole), carbonyl diimidazole (0.032 mmole), and DIEA (0.09 mmole) in 0.5 ml DCM was shaken overweekend at RT. The crude was then purified on reverse column to give the thiohydantoin product which was converted into Y4 (R^2 =H; R^3 =Me; R^4 =iBu; Z=para-(CH_2) C_6H_4 (CH_2)—, R^{23} =H; R^{23} =Pr).

The following compounds were prepared using similar method.

#	Structure	MW	Obs. m/e	
1457	HN N N NH NH	413	414	40
	/			45
1458	HN	413	414	50
				55
	O NH NH			60
				65

Method Z

Phoxime Resin

Z1

$$\begin{array}{c}
N-Z \\
\hline
Phoxime Resin
\end{array}$$
 $\begin{array}{c}
R^{16} \\
\hline
HN \\
R^{3}
\end{array}$
 $\begin{array}{c}
R^{16} \\
\hline
R^{17}
\end{array}$
 $\begin{array}{c}
R^{16} \\
\end{array}$

(In the scheme, $-Z-NH-C(O)-N(R^{16})(R^{17})-$ is equivalent to R^1 substituted by R^{21} , or R^1 Substituted by

alkyl- R^{22} , wherein R^{21} and R^{22} are $-N(R^{15})-C(O)-N(R^{16})(R^{17})$ and R^{15} is H, and wherein Z is optionally substituted alkylene-arylene, alkylene-arylene-alkylene, alkylene-heteroarylene, alkylene-heteroarylene, alkylene-cycloalkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene, alkylene-heterocycloalkylene, arylene, heteroarylene, cycloalkylene or heterocycloalkylene)

Method Z, Step 1:

To the solution of the PhoximeTM resin (1.23 mmol/g) in DCM was added the amine Z1 obtained from method L (R³=Me; R⁴= i Bu; Z=para-(CH₂)C₆H₄(CH₂)—) (2 eq). The mixture was shaken overnight before the resin was filtered and washed with DCM, MeOH, THF (3 cycles), then DCM (×2), dried in vacuum to get resin Z2 (R³=Me; R⁴= i Bu; Z=para-(CH₂)C₆H₄(CH₂)—).

Method Z, Step 2:

To the resin Z2 (R³=Me; R⁴= 4 Bu; Z=para-(CH₂)C₆H₄ (CH₂)—), swelled in DCM, in toluene was added N-methylbenzylamine (4 eq). The mixture was heated at 80-90° C. overnight before MP-TSOH resin (1.3 mmol/g, 12 eq) was added. The mixture was shaken for 1.5 hours, the solution was filtered and the resin washed with DCM and MeOH. The combined organic solution was concentrated in vacuo to get Z3 (R³=Me; R⁴= 4 Bu; Z=para-(CH₂)C₆H₄(CH₂)—; R¹6=Me; R¹7=Bn).

Method Z, Step 3:

Compound Z4 (R³=Me; R⁴= i Bu; Z=para-(CH₂)C₆H₄ (CH₂)—; R¹⁶=Me; R¹⁷=Bn) was generated from Z3 (R³=Me; R⁴= i Bu; Z=para-(CH₂)C₆H₄(CH₂)—; R¹⁶=Me; R¹⁷=Bn) using method similar to Method A step 3.

The following compounds were prepared using similar method

#	Structure	MW	Obs. m/e
1460		457	458
1461	O NH NH NH	469	470
1462	ON NH NH	471	472

	-continued		
#	Structure	MW	Obs. m/e
1463		471	472
1464	O NH NH	483	484
1465	OH NH NH NH	485	486

#	Structure	MW	Obs. m/e
1466	O NH NH	485	486

#	Structure	MW	Obs. m/e
1469	O NH NH O NH	501	502
1470	O NH NH	507	508
1471	O NH NH	509	510

#	Structure	MW	Obs. m/e
1472	H NH NH NH	517	518

	-continued		
#	Structure	MW	Obs. m/e
1475		533	534
1476	ОН	533	534

#	Structure	MW	Obs. m/e
1478	O NH NH	545	546

#	Structure	MW	Obs. m/e
1481	O NH NH	547	548

	-continued		
#	Structure	MW	Obs. m/e
1483	O NH NH	568	569
1484		571	572
1485	O NH NH	593	594

	-continued		
#	Structure	MW	Obs. m/e
1486 O=	O H NH ₂ H N NH NH	596	597
1487	O NH NH	607	608
1488	NH HN NH	364	365
1489	O NH NH NO	377	377

20

25

30

35

-continued

#	Structure	MW	Obs. m/e
1490	NH NH NH NH	513	514

Method AA

The following compounds were prepared using similar $^{55}\,$ method.

2-b]pyridine (AA2) (18 mg) was reacted with AA1, obtained from method Q, and diisopropylethylamine (14 uL) in acetonitrile (2.5 mL). The resulting mixture was heated at 65° C. for 18 h. The reaction mixture was placed on a preparative silica gel plate and eluted with hexane:ethyl acetate 3:1 to give the desired product which was treated with 40% TFA. Evaporation of the solvent followed by purification afforded

compound AA3.

8,11-Dichloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,

Method AB

Method AB, Step 1:

To a solution of (R)-(+)-2-methyl-2-propane sulfonamide $(1.0 g, 8.3 \text{ mmol}, 1 \text{ eq}) \text{ and AB1} (R^3 = Ph, R^4 = n - Bu) (3 \text{ mL}, 9.1)$ mmol, 1.1 eq) in anhydrous THF (30 mL) at room tempera- 25 ture was added Ti(OEt)₄ (7 mL, 17 mmol, 2 eq). The mixture was heated at 70° C. for 24 h. After cooling to room temperature, the mixture was poured into 30 mL of brine under vigorous stirring. The resulting suspension was filtered through a pad of Celite and the solid was washed with EtOAc 30 $(2 \times 20 \,\mathrm{mL})$. The filtrate was washed with brine $(30 \,\mathrm{mL})$, dried (Na2SO4), and concentrated in vacuo. The residue was chromatographed on silica by eluting with hexane/Et₂O (5:1) to give 1.9 g (85%) of (R)-2-methyl-N-(1-phenylpentylidene) propane-2-sulfinamide. ¹HNMR (CDCl₃, 300 MHz): δ 7.91 35 (m, 2H), 7.52-7.37 (m, 3H), 3.27 (m, 1H), 3.15 (m, 1H), 1.73-1.61 (m, 2H), 1.47-1.38 (m, 2H), 1.31 (s, 9H), 0.95 (m, 3H). MS(ESI): MH⁺=265.9. HPLC t_R =7.24, 7.58 min (E/Z=5.5:1).

To a solution of methyl acetate (0.6 mL, 6.9 mmol, 2 eq) in 40 THF (5 mL), LDA (2M in heptane/THF, 3.4 mL, 6.9 mmol, 2 eq) was added dropwise via a syringe at -78° C. After stirring at -78° C. for 30 min, a solution of ClTi(Oi-Pr)₃ (1.8 mL, 7.6 mmol, 2.2 eq) in THF (5 mL) was added dropwise. After stirring for another 30 min, a solution of (R)-2-methyl-N-(1-45 phenylpentylidene)propane-2-sulfinamide (0.9 g, 3.4 mmol, 1 eq) in THF (2 mL) was added dropwise via a syringe. The mixture was stirred at -78° C. for 3 h and TLC showed no starting material left. A saturated aqueous solution of NH₄Cl (10 eq) was added and the suspension was warmed to room 50 temperature. The mixture was diluted with H₂O (50 mL) and stirred for 10 min. The mixture was then partitioned between H₂O (50 mL) and EtOAc (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 50 \text{ mL})$. The combined organic layers were washed with 55 $_{1}$ brine, dried (MgSO₄) and concentrated to give 1.1 g of a brown oil. Chromatography on silica gel using 50% EtOAc/ hexanes as eluent gave 0.8 g (76%) of methyl 3-((R)-2-methylpropan-2-ylsulfinamido)-3-phenylheptanoate as a yellow oil. ¹HNMR (CDCl₃, 300 MHz): δ7.15-7.07 (m, 5H), 3.35 (s, 60 1H), 3.19 (dd, J=16, 5.6 Hz, 1H), 3.01 (dd, J=15.8, 5.5 Hz, 1H), 2.07 (m, 2H), 1.71 (m, 2H), 1.35-1.26 (m, 4H), 1.17 (s, 9H), 0.89 (m, 3H). MS(ESI): MH+=339.9. HPLC t_R=7.50, $7.6 \min (E/Z=1.5:1)$

To a solution of methyl 3-((R)-2-methylpropan-2-ylsulfinamido)-3-phenylheptanoate (0.4 g, 1.1 mmol) in 12 mL of MeOH was added 16 mL of 4N HCl/dioxane. After stirring

for 30 min, the volatiles were removed in vacuo. The residue was re-dissolved in MeOH (6 mL), stirred for 5 min, and evaporated again to afford 0.30 g (97%) of AB2 (R³=Ph, R⁴=n-Bu) as a yellow solid. ¹HNMR (CDCl₃, 300 MHz): δ 9.01 (br s, 2H), 7.37-7.12 (m, 5H), 3.64 (m, 1H), 3.54 (s, 3H), 3.31 (m, 1H), 2.09 (m, 2H), 1.8 (m, 2H), 1.1 (m, 4H), 1.07 (s, 9H), 0.7 (m, 3H). MS(ESI): MH⁺=235.9. HPLC t_R =4.72 min. Method AB, Step 2:

Treatment of compound AB2 (R³=Ph, R⁴=n-butyl) with thiophosgene in CH₂Cl₂ in the presence of aqueous NaHCO₃ at 0° C. generates isothiocyanate AB3 (R³=Ph, R⁴=n-butyl) which was converted into final product using method similar to Method A Step 2 and Method A Step 3 to give product AB5 (R³=Ph, R⁴=n-butyl, R¹=Me). ¹HNMR (CDCl₃, 300 MHz): δ 10.4 (br s, 1H), 7.25-7.11 (m, 5H), 3.23 (dd, J=16, 5.6 Hz, 1H), 3.03 (s, 3H), 2.8 (dd, J=15.8, 5.5 Hz, 1H), 2.49 (s, 1H), 1.78 (m, 2H), 1.1-1.0 (m, 4H), 0.99 (m, 3H). MS(ESI): MH⁺=260.2. HPLC t_R=5.09 min.

The following compounds were synthesized using similar methods:

#	Structure	MW	Obs. m/e
189	HN NH	239	240
190	HN	253	254
191	HNNNO	259	260
192	HNNH	333	334

-continued	

-continued

#	Structure	MW	Obs. m/e		Structure	MW	Obs.
193	HNNH	333	334	197		537	538
194	NH NH CI	349	350	20	HIN N		
				25 198 30	NH	537	538
195	O NH NH	443	444	35	NH NH N		
	NH NH NO			40 199 45	HNNNO	295	296
196	ONH	463	464	50 55 200	Br	295	296
	NH NH			60	HN HO		
				65	Br		

Method AC

$$\begin{array}{c} O \\ R^4 \end{array} \begin{array}{c} + R^1 NHOH + H_2 NCN \end{array} \begin{array}{c} R^1 \\ N \\ NH \end{array}$$

$$\begin{array}{c} NH \\ R^3 \\ R^4 \\ AC3 \end{array}$$

The synthesis was adapted from a procedure by Hull, R. et al, J. Chem. Soc. 1963, 6028-6033. Thus, to a solution of AC2 $(R^1=Benzyl)$ (0.72 g, 5.9 mmol) in AC1 ($R^4=Me$, $R^3=Me$) (1.4 mL) was added a 50% agueous solution of cyanamide (0.31 mL, 8.0 mmol). The reaction was heated with stirring at reflux (~40° C.) for 0.5 h, then cooled to 25° C. and stirred for an additional 16 h. The volatiles were removed in vacuo and the residue was partitioned between ether and H₂O. The organic layer was dried over Na2SO4, filtered and the volatiles were removed in vacuo. The residue was purified by column chromatography using 5-10% CH₃OH/CH₂Cl₂ as eluent followed by reverse phase preparative HPLC to give $0.15 \text{ g} (8.0\%) \text{ of AC3 } (R^1=\text{benzyl}, R^4=\text{Me and } R^3=\text{Me}) \text{ as a}$ white solid. ¹H NMR (CH₃OH, 300 MHz): δ 7.35-7.33 (m, 5H), 4.71 (s, 2H), 1.46 (s, 6H); 13C NMR (CDCl₃, 75 MHz) δ 157.8, 135.6, 129.1, 128.5, 127.9, 104.2, 59.6, 28.8. MS ₃₀ (ESI) m/e 206.1 $(M+H)^+$.

#	Structure	MW	Obs. m/e
201	H N	205	206
	HN N		
	N-O		
	()		

Method AD

NH2
$$R^{4}$$

$$AD1$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^$$

Method AD, Step 1:

AD2 (R³=Ph, R⁴=¹Butyl) was prepared from AD1 using method similar to Method AB, step 2.

Method AD, Step 2:

The synthesis was adapted from a procedure by Hussein, A. Q. et al, *Chem. Ber.* 1979, 112, 1948-1955. Thus, to a mixture of AD2 (R³=Ph, R⁴=tert-Butyl) (0.56 g, 2.7 mmol) and boiling chips in CCl₄ (25 mL) was added N-bromosuccinimide (0.49 g, 2.7 mmol). The mixture was irradiated with a 200 watt light source for 1 h. The reaction was cooled, the solid filtered off and the volatiles were removed in vacuo. Chromatography on silica gel by eluting with 5% EtOAc/hexane gave 0.57 g (73%) of 1-(1-bromo-1-isothiocyanato-2,2-dimethylpropyl)benzene as a beige powder. 1 H NMR (CDCl₃, 300 MHz): δ 7.63-7.61 (m, 2H), 7.37-7.26 (m, 3H), 1.17 (s, 9H); 13 C NMR (CDCl₃, 75 MHz): δ 139.1, 129.0, 128.9, 128.6, 127.5, 91.2, 45.6, 26.6. MS (ESI) m/e 284.9 (M+H) $^{+}$.

To a solution of 1-(1-bromo-1-isothiocyanato-2,2-dimethylpropyl) benzene (0.13 g, 0.47 mmol) and the hydrochloride salt of N-methylhydroxylamine (0.047 g, 0.57 mmol) in THF (3 mL) was added triethylamine (0.18 mL, 1.32 mmol). The mixture was stirred at 25° C. for 16 h, filtered and the volatiles were removed in vacuo. The residue was purified by column chromatography using CH₃OH/CH₂Cl₂ as eluent to give 0.050 g (42%) of AD3 (R³=Ph, R⁴=tert-Butyl) as a glassy solid. ^1H NMR (CDCl₃, 300 MHz): δ 7.35-7.26 (m, 5H), 3.38 (s, 3H), 1.0 (s, 9H); MS (ESI) m/e 251.1 (M+H)+.

Method AD, Step 2:

45

To a solution of AD3 (R³=Ph, R⁴=tert-Butyl) (0.065 g, 0.26 mmol) in CH₃OH (5 mL) at 0° C. was added a solution of aqueous ammonia (2 mL) followed by a 70% aqueous solution of t-butylhydroperoxide (2 mL). The reaction was allowed to warm to 25° C. and stirred for 16 h, The volatiles were removed and the residue was purified by reverse phase HPLC to give 2.0 mg (2.2%) of AD4 (R³=Ph, R⁴=tert-Butyl) as a colorless oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.47-7.43 (m, 2H), 7.39-7.35 (m, 3H), 3.23 (s, 3H), 1.0 (s, 9H); MS (ESI) mile 234.2 (M+H)⁺.

The following compounds were synthesized using similar methods:

#	Structure	MW	Obs. m/e
202	HN NH	213	214
203	NH NH NH	233	234

#	Structure	MW	Obs. m/e
204	NH O NH	309	310

Method AE

Method AE, Step 1:

TBDMS-Cl (5.3 g, 35.19 mmole) and imidazole (2.4 g, 35.19 mmole) were added to a suspension of H2 (R^1 =Me, R^3 =cyclohexylmethyl) (8.2 g, 31.99 mmole) in 220 ml DCM. The reaction mixture was stirred at room temperature overnight. The reaction mixture was filtered, and the filtrate was 65 diluted with 1200 ml EtOAc. The organic phase was washed with saturated NaHCO $_3$ 3× and brine 3×, and dried over

608

anhydrous Na_2SO_4 to give 12 g of AE2 (R^1 =Me, R^3 =cyclohexylmethyl), which was used for next step without further purification.

Method AE, Step 2:

AE2 (R¹=Me, R³=cyclohexylmethyl; 12 grams crude) was converted to iminohydantoin using conditions similar to Method A Step 3, which was subsequently treated with 75% TFA in DCM at room temperature for 24 hrs. The solvent was evaporated in vacuo to give 13.6 g of a product that was reacted with Boc anhydride to give 5.8 g AE3 (R¹=Me, R³=cyclohexylmethyl) after column purification.

Method AE, Step 3:

AE4 (R¹=Me, R³=cyclohexylmethyl)(8.2 g) was obtained from AE3 (5.8 g) according to the step 4 of the method H.

Method AE, Step 4:

To a solution of AE4 (R^1 =Me, R^3 =cyclohexylmethyl) ((3.95 g, 8.38 mmol) in anhydrous THF (98 mL) was added diisopropylethylamine (7 mL, 40 mmol). The reaction was stirred under N_2 (gas) at room temperature. After 5.5 h, the reaction was concentrated and the crude material was purified via flash chromatography eluting with a gradient of 0 to 75% ethyl acetate in hexane to afford AE5 (R^1 =Me, R^3 =cyclohexylmethyl) (2.48 g, 92%).

Method AE, Step 4:

To a solution of R 15 OH (R 15 =cyclobutyl) (10 µl) and HBF $_4$ (1 equiv) in anhydrous methylene chloride (0.5 mL) was added a solution of AE5 (R 1 =Me, R 3 =cyclohexylmethyl) (20 mg, 0.062 mmol) in methylene chloride (0.5 mL). The reaction was agitated overnight at rt. Trifluoroacetic acid (1 mL) was added to the reaction mixture and the solution was agitated for 1 h at rt. The reaction was concentrated and the crude material was purified via reverse phase preparative HPLC/ MS eluting with a 7 min gradient of 5 to 95% CH $_3$ CN in H $_2$ O with 0.1% formic acid to afford AE5 (R 1 =Me, R 3 =cyclohexylmethyl, R 15 =cyclobutyl).

The following compounds were synthesized using similar method:

#	Structure	MW	Obs. m/e
205	NH NH O	267	268
206	HN	293	294

-continued	

	-continued						
#	Structure	MW	Obs. m/e	#	Structure	MW	Obs. m/e
207	NH NH	295	296	5 212 10	NH NH O	307	308
208	Chiral HN N	295	296	213 20 25	HN	307	308
209	HN	295	296	30 214	Chiral HN N HN O	309	310
210	Chiral HN N	295	296	40 215 45	Chiral HN N	309	310
211	HN	305	306	50 55 216	HN	309	310
				65			

611 -continued					612 -continued		
Structure	MW	Obs. m/e		#	Structure	MW	Obs. m/e
HN	309	310	5	222	NH NH O	329	330
HN	321	322	15	223	O N NH	333	334
HN				224	HN	335	336
HNNNO	321	322	35	225	HN	335	336
NH NH	321	322	40	226	HN	335	336
N NH	322	323	50	227	HN	335	336
O NA			60		HN		

010
-continued
-continucu

	-continued		-continued				
#	Structure	MW r	Obs. n/e	#	Structure	MW	Obs. m/e
228	O N NH	335 3	5 336 5		O HN NH	337	338
229	HN /	335 3	336				
	HN		20		HOOOO	337	338
230	HN N N O	335 3	336 30 336 35	235	HN	349	350
			40				
231	NH O	335 3	336 45	236	O HN NH	349	350
			50	1			
232	HN	335 3	55 336	237	HN	349	350
	OHNO		60	1	HN		
			65				

015
-continue

-confinited	

	-continued				-continued					
#	Structure	MW	Obs. m/e	_	# Structure	MW	Obs. m/e			
238	HN HN O	349	350	10	CI HN NO	363	364			
				15	244 HN	389	390			
239	NH O—Si	353	354	20	HN					
	//			25	F F F					
				30	HN N	321	NA			
240	N-NH NH	361	362		HN					
				35						
				40	Method AF					
241	HN	363	364	45	NBoc R ¹ NH 1) ArOH/tBuOK NH THF	NH				
	HN			50	O 2) 50% TFA/DCM O OTf AE4	R^3 O. AF4	~ _{R¹⁵}			
242	NH NH	363	364	μ	To a solution of tBuOK (9.5 mg, 0.0848 mm inhydrous THF was added ArOH (Ar=m-Chl il, 0.1273 mmole) in 0.5 ml anhydrous THI iddition of AE4 (R ¹ =Me, R ³ =cyclohexylme	oropheny F follow	yl)(13 ed by			

42 NH 363 364
NH O CI

To a solution of tBuOK (9.5 mg, 0.0848 mmole) in 0.5 ml anhydrous THF was added ArOH (Ar=m-Chlorophenyl)(13 μl, 0.1273 mmole) in 0.5 ml anhydrous THF followed by addition of AE4 (R¹=Me, R³=cyclohexylmethyl) (20 mg, 0.0424 mmole) in 0.5 ml anhydrous THF. The reaction mix-ture was stirred at room temperature for 2 days before it was diluted with 1 ml MeCN, treated with 100 mg MP-TsOH resin and 100 mg Amberlyst A26 resin. The resin was removed by filtration and the filtrate was evaporated down to give a product that was treated with 50% TFA for 1 hr. After evaporation of TFA in vacua, the residue was dissolved in 2 ml MeCN, and treated with 100 mg MP-TsOH resin. The resin was washed thoroughly with THF, MeCN and MeOH,

and then treated with 2M NH $_3$ in MeoH to give AF2 (R 1 =Me, R 3 =cyclohexylmethyl and R 15 =3-chlorophenyl).

The following compounds were synthesized using similar method:

#	Structure	MW	Obs. m/e	
246	NH NH O	316	317	1
247	NH NH	316	317	2

	:		
-co	nn	nu	e

-conf		

	-continued					-continued			
#	Structure	MW	Obs.		#	Structure	MW	Obs. m/e	
256	NH NH F	333	334	10	261	O NH NH	340	341	
257	O N NH	333	334	15	262		340	341	
258	O NH	333	334	253035	263	NH NH	343	344	
259	NH NH	333	334	40	264	O NH NH	343	344	
260	F	340	341	50	265	O NH	343	344	
	O NH NH			60		NH			

	
-continued	l

	٠		
-con	m	шест	

#	Structure	MW	Obs. m/e	5#	Structure	MW	Obs. m/e
266	O NH NH	343	344	271	O NH NH	345	346
267	NH HN	344	345	20 272 25	O NH NH	345	346
268	NH NH ON NH	344	345	30 273 35	O N NH	347	348
269	NH NH O	345	346	40 45 274		347	348
270	O NH NH	345	346	50 55 275	F NH	349	350
	HO			60	NH OCI		

-continued

			Obs.				Obs.
#	Structure	MW	m/e	5 #	Structure	MW	m/e
276	NH NH CI	349	350	281 10	O N NH F O NH F F	351	352
277	NH NH CI	349	350	282 20 25	O NH NH	351	352
278	NH NH CI	349	350	30 2833540	O N NH NH F	351	352
279	NH NH NH F	351	352	284 45 50	O N NH NH F	351	352
280	NH NH F	351	352	55 2856065	O NH NH	351	352

		1
-cor	1T1r	ານອດ

-continued	

#	Structure	MW	Obs. m/e	•	#	Structure	MW	Obs.
286	O NH NH	351	352	5	291	ONNNH	357	
	F			10 15		NH		
287	 F	355	356					
	O NH NH			20	292	NH O	357	358
				25		NH O		
				30				
288	NH O	355	356	35	293	NH H	358	359
	o"			40				
289	O NH NH	357	358	45	294	NH NH	358	359
				50				
290	O NH	357	358	55	295	·	358	359
	O			60		O NH NH		
				65		H_2N		

-con	tir	111	ed

	continued					Continued		
#	Structure	MW	Obs. m/e	•	#	Structure	MW	Obs. m/e
296	O NH NH	358	359	5	301	O NH NH	359	360
	O NH ₂			15				
297	O NH NH	359	360	20				
	Nn Nn			25	302	O NH NH	360	361
298	$O \nearrow N \nearrow NH$	359	360	30				
	NH NH			35	303	O N+ O-	360	361
299	O NH NH	359	360	40	303	O NH NH	300	301
				50				
300	O N NH	359	360	55	304	O NH NH	360	361
	NH			60		NH NH		
	Ĭ			65				

-cc	. 12	tir	 പ

-continued

-continued								
#	Structure	MW	Obs.	. 5	#	Structure	MW	Obs. m/e
305	O N NH	363	364	10	310	NH NH O	365	366
306	O N NH	363	364	20	311	NH NH NH	366	367
307	O NH NH	363	364	30 35	312	NH NH NH	366	367
308	O NH NH	363	364	45	313	NH NH NH NH	366	367
309	NH NH	365	366	556065	314	NH NH N	366	367

	_	_			
					á
00	m	+-	121	10	A
-co	и.	ш	ш		u

	med

#	Structure	Ob MW m	/e		MW	Obs. m/e
315	NH ONH O	366 36	3 32	O NH NH	367	368
316	NH NH O	366 36	32 57 20 25		369	370
317	NH NH N	366 36	30 30 37	O N NH NH	371	372
318	O NH NH	367 36	45	O N NH NH	371	372
319	F CI NH NH	367 36	50 55 32 60	ON NH NH	371	372
	F CI		65			

-continued					-continued			
#	Structure	MW	Obs. m/e	5	#	Structure	MW	Obs. m/e
325	NH NH O	372	373	10	329	O NH NH	373	374
326	O NH NH	372	373	20 25 30	330	O NH NH	373	374
327	O NH NH	372	373	35 40 45	331	O NH NH	375	376
328	O NH NH	372	373	55	332	O NH NH	375	376

00	ntin	mad

	-continued					
#	Structure	MW	Obs. m/e	5	#	
333	O N NH NH	375	376	10	338 CI	
					339	
334	O NH NH	377	378	20		
	NH			25		<u> </u>
	CI			30	340	
335	O NH NH	377	378	35	ĺ	_
	CI			40	341	`
336	O NH NH	377	378	45	Cl	_
	CI			50	342	
337	NH NH	383	384	55		
	NH CI			60	[/
					F	_

-continued

03/		038
ontinued		-continued
	Obs.	

#	Structure	MW	Obs. m/e	5	#	Structure	MW	Obs m/e
343	O NH NH	383	384	10	348	HN H	385	386
344	O NH NH	383	384	20	349	NH NH	386	387
	CI			25				
345	O N NH	383	384	35	350	NH O NH S	387	388
346	CINNH	383	384	40	351		387	388
	CI			50	331	O NH NH	361	300
347	CI O NH	385	386	55	352	O NH NH	393	394
	O NH			60				

640

Continued					Continued				
#	Structure	MW	Obs. m/e	. 5	#	Structure	MW	Obs. m/e	
353	O NH NH	393	394		358	NH NH NH	400	401	
354	Br O NH NH	393	394	20	250		100		
				25	359	NH NH NH	400	401	
355	O NH NH	393	394	30					
356	Br O NH	399	400	35 40	360	O N NH NH HN O	400	401	
	F O			45 50					
357	F F NH	399	400	55 60	361	O NH NH	401	402	
	F O					F			

#

	1
-continued	1

#	Structure	MW	Obs. m/e	. 5
362	O N NH NH F	401	402	10
	 F			20

$$\begin{array}{c} & & & 417 & 418 \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$$

25

30

35

40

45

370

-continued		
Structure	MW	Obs. m/e

Method AG

NBoc

$$R^{1}$$

NH

 R^{3}

OTf

 R^{21}
 R^{21}
 R^{21}
 R^{3}
 R^{3}

AE4

NBoc

$$R^1$$

NH

 $S0\%$ TFA/DCM

 R^3
 R^{21}

AG1

AG2

Method AG, Step 1: R^{21} —H (R^{21} =PhS—) (33 μ l, 0.318 mmole) was treated 60 with NaH (10.2 mg, 60% in mineral oil) in 0.5 ml anhydrous THF. A solution of AE4 (R¹=Me, R³=Cyclohexylmethyl) (20 mg, 0.0424 mmol) in 0.5 ml anhydrous THF was added. The reaction mixture was stirred at room temperature overnight before it was partitioned between ether and saturated 65 NaHCO₃ water solution. The aqueous phase was extracted with ether 2 times. The combined organic phase was washed

644

with brine 2 times, and dried over anhydrous NaSO₄. The crude was purified on flash column with EtOAc/hexane to give 9 mg of AG1 $(R^{21}=PhS--,$ R³=cyclohexylmethyl) (49.2% yield).

Method AG, Step 2:

AG1 (R^{21} =PhS—, R^{1} =Me, R^{3} =cyclohexylmethyl) was treated with 50% TFA according to the Step 6 of the method H to give AG2 (R²¹=PhS—, R¹=Me, R³=cyclohexylmethyl).

The following compounds were synthesized using similar

# Structure	MW	Obs. m/e
372 NH NH O O O	315	316
373 NH NH S	331	332
374 NH NH S	337	338

Method AH

AH3

HCI NH₂

AH2

Method AH, Step 1:

Benzophenone imine (3.27 g, 18.04 mmole) was added to a suspension of AH1 (R³=cyclohexylmethyl) (4 g, 18.04 mmole) in 65 ml DCM. The reaction mixture was stirred at room temperature overnight under N2 before the solid was filtered, and the solvent was evaporated. The residue was dissolved in 100 ml ether, washed with water 2× and dried over anhydrous MgSO₄. The crude was purified on flash column to give 5.08 g (80.57% yield) of AH2 (R³=cyclohexyl 10 methyl).

Method AH, Step 2:

A solution of AH2 (R³=cyclohexylmethyl) (1 g, 2.86 mmole) in 12 ml anhydrous THF was added to a suspension of 18-crown-6 (0.76 g, 2.86 mmole) and 30% KH in mineral oil (1.16 g, 8.58 mmole) in 4 ml anhydrous THF under N2. The mixture was cooled in ice-bath and R⁴Br (R⁴=3-pyridylmethyl, as a hydrobromide salt) was then added. The reaction mixture was stirred in ice-bath for 30 min and at room temperature for 2 more hrs before the reaction was quenched with 2 ml of HOAc/THF/H₂O (0.25:0.75:1). The mixture was diluted with 40 ml EtOAc/H₂O (1:1). The aqueous phase was extracted with EtOAc 3 times. The combined organic phase was washed with brine 3 times and dried over anhydrous 25 MgSO4. The crude was purified on flash column to give 0.44 g (35.14% yield) of product which was treated with 1N HCl (2.2 ml, 2.22 mmole) in 3 ml ether in ice-bath followed by stirred at r.t. overnight. The aqueous phase was evaporated

646

and purified on C-18 reverse phase column to give 0.22 g (66% yield) of AH3 (R⁴=3-pyridylmethyl; \hat{R}^3 =cyclohexylmethyl).

Method AI

To a solution of compound AI1 (R¹=Me, R³=n-Bu) (34 mg, 0.105 mmol) in methanol (1 ml) was added 10% Pd/C (5 mg). The mixture was kept under an H₂ balloon for 1 hr. After filtration of the catalyst, the filtrate was concentrated to get crude product. This residue was purified by RP HPLC to get compound AI2 (R¹=Me, R³=n-Bu) (25 mg, 100%). Observed MW (M+H) 246.1; exact mass 245.15. ¹H NMR (400 MHz, CD₃OD): δ =7.59 (m, 2H), 7.36 (m, 3H), 3.17 (s, 3H), 2.17 (m, 2H), 1.27 (m, 4H), 0.86 (t, 3H, J=7.2 Hz).

The following compounds were synthesized using similar

#	Structure	MW	Obs. m/e
375	NH NH NH	283	284
376	NH NH	285	286
377	N—NH NH NH	299	300

	-continued		
#	Structure	MW	Obs m/e
378	NH NH NH	450	451
379	O N NH NH NH	462	463
380	O NH NH NH	463	464

# Structure	MW	Obs. m/e
381 NH NH	487	488
382 NH NH NH	489	490
NH NH NH	503	504
384	516	517

AJ2

45

50

55

60

65

To a mixture of compound AJ1 (R¹=Me, R³=n-Bu) (70 mg, 0.165 mmol) and butylzincbromide (1.32 ml, 0.6 mmol) was added Pd(dppf)Cl2. The mixture was degassed, sealed and heated at 55° C. for 1 day. The mixture was diluted with CH₂Cl₂ and NH₃/H₂O. The organic layer was separated, 30 dried, concentrated, and purified by RP HPLC to get product which was then treated with 4N HCl/dioxane for 30 min to give compound AJ2(R¹=Me, R³=n-Bu) (12 mg, 25%). Observed MW (M+H) 302.1; ¹H NMR (400 MHz, CD₃OD): δ =7.32 (m, 3H), 7.22 (m, 1H), 3.19 (s, 3H), 2.65 (m, 2H), 2.20 35 mg), Rh/C (5 mg) and conc. HCl (0.05 ml). The mixture was (m, 2H), 1.60 (m, 2H), 1.38 (m, 4H), 1.24 (m, 2H), 0.92 (m,

The following compound was synthesized in a similar fashion:

#	Structure	MW	Obs. m/e
386		518	519
	ON		
	NH		

Method AK

$$R^{1}$$
 NH
 NH
 NH
 R^{21}
 R^{3}
 R^{21}
 R^{21}
 R^{3}
 R^{21}
 R^{3}
 R^{21}
 R^{3}
 R^{21}
 R^{3}
 R^{21}
 R^{3}
 R^{21}
 R^{3}

To a solution of AK1 (R¹=Me, R³=n-Butyl, R²¹=n-Bu) (9 mg, 0.03 mmol) in methanol (1 ml) was added 5% Pt/C (5 kept under H₂ (50 psi) for 2 days. After the filtration of the catalyst, the filtrate was concentrated to get compound AK2 (R¹=Me, R³=n-butyl, R²¹=n-Bu) Observed MW (M+H) 308.1. ¹H NMR (CD₃OD): 6=3.16 (s, 3H), 1.80 (m, 6H), 1.26 ⁴⁰ (m, 16H), 0.88 (m, 6H).

The following compounds were synthesized using similar method:

# Structure	MW	Obs. m/e
NH NH NH	277	278
388 NH NH NH	291	292

-continued

	. •	- 4	
-cor	ıtır	nned	

-continued			-continued		
# Structure	Obs. MW m/e	•	# Structure	Obs. MW m/e	
389 NH NH NH	305 306	10	ON NH NH	468 469	
390 NH		20 25	Method AL		
391 O HN	391 392 NH N	30 35 40	Br NH ₂ PtO ₂ , Conc. HCl MeOH		
		45 50		NH_2	
392	391 392 NH	55	Method AL, Step 1: To a solution of compound AL1 (R ³ =n-Bu) (418 mg, 1.39	

mmol) in methanol (8 ml) was added PtO_2 (40 mg) and conc. HCl (0.4 ml). The mixture was hydrogenated (50 psi) for 1 day. After filtration of the catalyst, the filtrate was concentrated. The crude residue was basified to pH=11-12 by 1NNaOH. This mixture was extracted with ethyl acetate. The organic layer was separated, dried and concentrated to get compound AL2 (R³=n-Bu) (316 mg, 100%).

Method AL, Step 2:

To a solution of compound AL2 (R³=n-Bu) (300 mg, 1.32 mmol) in dichloromethane (6 ml) was added (BOC)₂O (316

10

15

20

397

50

mg, 1.45 mmol). The mixture was stirred at RT for 1.5 hr. It was diluted with water and dichloromethane. The organic layer was separated, dried and concentrated to get compound AL3 (R^3 =n-Bu) (464 mg, 100%).

Method AM

Method AM, Step 1:

Compound AM1 (R 1 =Me, R 3 =n-Butyl) was treated with 4N HCl in dioxane for 2 hr. The mixture was concentrated to get compound AM2 as an HCl salt (R 1 =Me, R 3 =n-Butyl). Observed MW (M+H) 470.1; 1 H NMR (CD $_3$ OD): δ =7.28 (m, 2H), 6.96 (m, 3H), 4.80 (m, 2H), 4.56 (m, 1H), 4.00 (m, 1H), 3.64 (m, 4H), 3.37 (m, 2H), 3.12 (m, 1H), 3.00 (m, 1H), 2.90 (m, 1H), 2.72 (m, 1H), 2.38 (m, 1H), 2.12-1.62 (m, 8H), 1.35 (m, 6H), 1.12 (m, 1H), 0.91 (m, 3H).

Method AM, Step 2:

To a solution of compound AM2 (R^1 =Me, R^3 =n-Butyl) (32 mg, 0.068 mmol) in dichloromethane (1 ml) was added acetyl chloride (5 ul, 0.072 mmol). The mixture was stirred for 2 hr. It was then diluted with CH_2Cl_2 and water. The organic layer was separated, dried, concentrated and purified by RP HPLC to get compound AM3 (R^1 =Me, R^3 =n-Butyl and R^{15} =Me) Observed MW (M+H) 512.3; 1 H NMR (400 MHz, CDCl₃): 60 8=7.27 (m, 2H), 6.98 (m, 1H), 6.92 (m, 2H), 4.65 (s, 2H), 4.50 (m, 2H), 3.98 (m, 1H), 3.70 (m, 1H), 3.41 (m, 2H), 2.98 (m, 2H), 2.62 (m, 1H), 2.50 (m, 1H), 2.47 (m, 1H), 2.02 (m, 5H), 1.75 (m, 6H), 1.26 (m, 7H), 0.84 (m, 3H).

The following compounds were synthesized using similar method:

25

30

-continued

-continued		
# Structure	MW	Obs. m/e
398 O NH NH NH NH O O O O O O O O O O O O O	498	499
399 O NH NH NH	511	512

$$R^{1}$$
 NH
 NH
 R^{3}
 R^{15}
 R^{16}
 R^{16}
 $AN3$

To a solution of compound AN2 (R¹=4-N-(α-phenoxyacetyl)piperidinylmethyl, R³=n-Butyl) (28 mg, 0.06 mmol) in dichloroethane (2 ml) was added butyraldehyde (5.3 ul, 0.06 mmol), triethylamine (8.4 ul, 0.06 mmol) and NaBH (OAc)₃ (18 mg, 0.084 mmol). The mixture was stirred overnight. It was then diluted with dichloromethane and water. The organic layer was separated, dried, concentrated and purified by RP HPLC to get AN2 (R¹=4-N-(a-phenoxyacetyl) piperidinylmethyl, R³=n-Butyl, R¹s=propyl and R¹6=H) (5.4 mg, 17%). Observed MW (M+H) 526.1; exact mass 525.37.

TH NMR (CD₃OD): δ=7.28 (m, 2H), 6.96 (m, 3H), 4.76 (m, 2H), 4.55 (m, 1H), 4.05 (m, 1H), 3.77 (m, 1H), 3.61 (m, 3H), 3.50 (m, 1H), 3.11 (m, 4H), 2.85 (m, 1H), 2.68 (m, 1H), 2.38 (m, 1H), 2.05 (m, 2H), 1.95 (m, 2H), 1.73 (m, 5H), 1.39 (m, 8H), 1.10 (m, 1H), 0.99 (m, 3H), 0.92 (m, 3H).

The following compound was synthesized using similar method:

# Structure	MW	Obs. m/e
400 NH NH	308	309

		Obs.
# Structure	MW	m/e
401 NH NH NH	308	309
402 NH NH NH NH NH NH NH NH NH N	525	526

Method AO

A mixture of copper chloride (2.06 g, 20.8 mmol) and lithium chloride (1.76 g, 41.6 mmol) in 100 ml of THF was cooled down to -78° C. To this mixture, a 2.0M solution of $_{50}$ AO1(R³=n-butyl) (10 ml, 20 mmol) was added gradually. The reaction was warmed up to -60° C., and AO2 (R⁴=m-Br-Ph) (2.9 ml, 22 mmol) was injected. The mixture was stirred at -60° C. for 15 minutes and then quickly warmed up to RT by removing the dry-ice bath. The reaction was quenched with water and sat. NaHCO3. After addition of diethyl ether, a lot of precipitate formed and was filtered. From the biphasic filtrate, the organic layer was separated, dried, concentrated and purified by silica gel chromatography (10% EtOAc/hex- 60 ane) to get ketone AO3 (R⁴=m-BrPh, R³=n-Bu) (3.93 g, 82%). Observed MW (M+H) 241.1; exact mass 240.01. ¹H NMR (400 MHz, CDCl₃): δ =8.07 (m, 1H), 7.88 (m, 1H), 7.64 (m, 1H), 7.34 (m, 1H), 2.94 (t, 3H, J=7.2 Hz), 1.71 (m, 2H), $_{65}$ 1.40 (m, 2H), 0.95 (t, 3H, J=7.6 Hz).

The following ketones were made according to Method 9:

Method AP

$$\begin{array}{c} R^{4} & OH \\ O \\ AP1 \end{array} \qquad \begin{array}{c} R^{4} & N \\ O \\ AP2 \end{array} \qquad \begin{array}{c} CuCl, LiCl \\ THF \\ \hline R^{3} \\ MgCl \\ AP3 \end{array}$$

Method AP, Step 1:

To a solution of AP1 (R⁴=3-Bromophenyl) (5 g, 25 mmol) in dichloromethane (10 ml) were added N,O-dimethylhy-

45

50

ĆΙ

droxylamine hydrochloride (2.56 g, 26.25 mmol) and 4-methylmorpholine (2.95 ml, 26.25 mmol). EDCl (5.04 g, 26.25 mmol) was then added portionwise. The reaction mixture was stirred at RT overnight and was then quenched with 1N HCl (60 ml). The mixture was extracted with dichloromethane. The organic layer was washed with 1N HCl and brine, dried over Na₂SO₄, and concentrated to give the Weinreb amide AP2 (R⁴=m-BromoPhenyl) (5.96 g, 98%). Observed MW (M+H) 244.1; exact mass 243.99. ^1H NMR (CDCl₃): δ =7.78 (m, 1H), 7.58 (m, 2H), 7.24 (m, 1H), 3.51 (s, 3H), 3.32 (s, 3H). This material was used in the next step without purification.

Method AP, Step 2:

To a suspension of magnesium turnings (1.19 g, 48.8 mmol) in 30 ml of THF was added dropwise a solution of R^3 Br (R^3 =cyclohexylethyl) (5.73 ml, 36.6 mmol) in 24 ml of THF. After addition of half of the solution of bromide, several 20 crystals of iodine were added to initiate the reaction. The mixture became cloudy and heat evolved. The rest of the solution of bromide was added dropwise. The mixture was stirred at RT for 30 minutes and then was cooled to 0° C., and $_{\rm 25}$ the AP2 (R⁴=m-BromoPhenyl) (5.96 g, 24.4 mmol) was added. The mixture was stirred at RT for 3 hr and then quenched with 1N HCl until no residual Mg(0) was left. The phases was separated, and the water layer was extracted with ether. The combined organic layers were washed with brine, dried, and concentrated. The crude was purified by silica chromatography (15% EtOAc/hexane) to get ketone AP3 (R⁴=m-BromoPhenyl, R³=Cyclohexylethyl) (8.06 g, 100%). Observed MW (M+H) 295.2; exact mass 294.06. ¹H NMR 35 $(400 \text{ MHz}, \text{CDCl}_3)$: $\delta = 8.18 \text{ (m, 1H)}, 7.85 \text{ (m, 1H)}, 7.64 \text{ (m, 1H)}$ 1H), 7.33 (m, 1H), 2.94 (t, 3H, J=7.2 Hz), 1.70 (m, 9H), 1.63 (m, 4H).

Method AQ

To a -78° C. solution of AQ1 (R⁴=cyclopropyl) (2.55 g, 38.0 mmol) in diethyl ether (100 ml) was added AQ2 (R³=n-BuLi) (38 ml, 1.5 M in hexanes, 57 mmol). After 45 min, the cooling bath was removed. After 3 h at RT, the reaction was 55 quenched by dropwise addition of water and then diluted further with EtOAc and water. The phases were separated and the aqueous layer was extracted with EtOAc (2×). The organic portions were combined, washed with brine, dried over MgSO₄, and concentrated. This crude residue was subjected to column chromatography (silica gel, $0\% \rightarrow 100\%$ CH₂Cl₂/hexanes) to provide the desired ketone AQ4 (R⁴=cyclopropyl, R³=n-Butyl) (2.57 g, 20.4 mmol, 54%). ¹H NMR (CDCl₃) δ 2.52 (1, J=7.2 Hz, 2H), 1.90 (m, 1H), 1.57 (m, 2H), 1.30 (m, 2H), 0.98 (m, 2H), 0.89 (t, J=7.6 Hz, 3H), 0.83 (m, 2H).

Method AR

Method AR:

Compound B2 (R^1 =m-Cl-Phenethyl, R^3 =Me, R^4 =i-butyl and R^5 =benzyl) was converted into AR^2 (R^1 =m-Cl-Phenethyl, R^3 =Me, R^4 =i-butyl and R^5 =benzyl) using method A step 3.

The following compounds were synthesized using similar methods:

#	Structure	MW	Obs. m/e
403	N NH NH	396	397
404	N NH NH NH	354	NA
405	N NH NH	477	NA
406		460	NA
	N NH NH		

15

20

25

35

-continued

Method AS

-continued

$$R^3$$
 R^4
 R^3
 R^4
 R^4
 R^3
 R^4

$$\begin{array}{c|c} H_2N & NH_2 \\ N & NEt_3, \\ AS6 & AS6 & AS6 \\ \hline \\ R^3 & NH & NH \\ AS5 & NH & AS5 \\ \end{array}$$

AS4

Method AS, Step 1:

To a mixture of AS1 (R³=Ph) (3.94 g) in toluene (10 ml) was added thionyl chloride (1.61 ml) and the resulting mixture as heated under reflux for 6 h (until HCl evolution ceased). The reaction mixture was kept overnight at rt before it was concentrated in vacua. Toluene (10 ml) was added and the mixture was concentrated in vacuo again. The reaction mixture was dissolved in CH2Cl2, solid sodium bicarbonate added, filtered and then the CH2Cl2 solution was concentrated in vacuo to give AS2 (R³=Ph).

Method AS, Step 2:

To AS2 (R^3 =Ph) (0.645 g) and AS5 (R^4 =4-chlorophenyl) (0.464 g), and 1,3-dimethylimidazolium iodide (0.225 g) in anhydrous THF (20 ml) was added 60% sodium hydride in oil (0.132 g). The resulting mixture was stirred at a for 18 h. The reaction mixture was concentrated and partitioned between H₂O and Et₂O. The dried Et₂O solution was concentrated in vacuo to give a yellow residue which was placed on preparative silica gel plates and eluted with CH₂Cl₂ to give AS3 (R³=Ph, R⁴=p-ClPh). (Miyashita, A., Matsuda, H., Hiagaskino, T., Chem. Pharm. Bull., 1992, 40 (10), 2627-2631).

Method AS, Step 3:

Hydrochloric acid (1 N, 1.5 ml) was added to AS3 (R³=Ph, R⁴=p-ClPh) in THF (10 ml) and the resulting solution was stirred at rt for 20 h. The reaction mixture was concentrated in vacua and then partitioned between CH₂Cl₂ and H₂O. The dried CH₂Cl₂ was concentrated in vacuo to give a residue which was placed on preparative silica gel plates and eluted with CH₂Cl₂:hexane 1:1 to afford AS4 (R³=Ph, R⁴=p-ClPh).

Method AS, Step 4:

AS4 (RC-Ph, R⁴=p-ClPh) (0.12 g) and methylguanidine, HC1 (AS6, R^1 =Me) (0.055 g) were mixed in absolute EtOH (5 ml) with triethylamine (0.2 ml) and then heated under reflux for 20 h. The resulting mixture was concentrated and then partitioned between CH₂Cl₂ and H₂O. The dried CH₂Cl₂ was concentrated in vacuo to give a residue which was placed on preparative silica gel plates and eluted with CH₂Cl₂:MeOH 9:1 to afford AS5 (R³=Ph, R⁴=p-ClPh and R¹=Me).

The following compounds were synthesized using similar methods:

#	Structure	MW	Obs.
411	NH NH	265	266
412	HN NH	265	266
413	NH NH S	271	272
414	NH NH S	271	272
415	NH NH	279	280
416	NH NH	295	296

			Obs.
#	Structure	MW	m/e
417	NH NH O	295	296
418	NH CI	299	300
419	NH Cl	299	300
420	NH NH O	309	310
421	NH NH NH	325	326
422	NH Br	343	344

	-continued		
#	Structure	MW	Obs. m/e
423	NH Br	343	344
424	NH NH Br	421	422
425	O NH NH	482	483
426	O NH NH NH O	512	513
427	HN NH O NO O	560	561

Method AT

2) TFA/DCM

Boc
$$N$$
 R^{15} R^{16} R^{3} R^{4} O

AT3

Method AT, Step 1:

AT1, prepared using a method similar to Method H, Step 1, 2 and 3, $(n=4, R^3=R^4=n-Bu)$ (0.146 g) in MeOH (3 ml) and 1N NaOH (0.727 ml) were stirred overnight at rt. The mixture was concentrated and then partitioned in water (pH~3, adjusted using conc. HCl) and EtOAc. The dried EtOAc layer was concentrated in vacuo to afford AT2 (n=4, R³=R⁴=n-Bu).

Method AT, Step 2:

Compound AT2 (n=4, R³=R⁴=n-Bu) (0.012 g) in MeCN (1 $^{15}~$ ml) was treated with EDC resin (0.12 g, 1.44 mmol/g), HOBT (0.004 g) in THF (1 ml), and n-butylamine (R¹⁵=H, R¹⁶=nbutyl) (0.007 ml). The reaction was carried out overnight at rt. before Argonaut PS-NCO resin (0.150 g), PS-polyamine resin (0.120 g) and THF (2 ml) were added and the mixture shaken for 4 h. The reaction mixture was filtered and resin washed with THF (2 ml). The combined organic phase was concentrated in vacuo before the residue was treated with 1N HCl in MeOH (1 ml) for 4 h followed by evaporation of solvent to give AT3 (n=4, R³=R⁴=n-Bu, R¹⁶=H and R¹⁶=n-Butyl).

The following compounds were synthesized using similar method:

#	Structure	MW	Obs. m/e
431	O HN HN N O	339	340
432	HNNH	366	367
433	HN NH	368	369
434	N HN HN O	380	381
435	N HN HN O	382	383

# Structure	MW	Obs. m/e
436 HN NH NH NH NH NH NH NH NH N	400	401
HN NH	406	07
438 NH NH	414	15
HN NH NH	414	15
440 NH NH NH O	420	21

#	Structure	MW	Obs. m/e
441	H NH NH	428	29
442	ONH NH NH	444	45
443		458	59

Method AU

A published procedure was adapted (Varga, I.; Nagy, T.; Kovesdi, L; Benet-Buchholz, J.; Dormab, G.; Urge, L.; Darvas, F. Tetrahedron, 2003, (59) 655-662).

AU1 (R¹⁵=H, R¹⁶=H) (0.300 g), prepared according to 60 procedure described by Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R., (Vogel's Textbook of Practical Organic Chemistry. 5th ed. Longman: new York, 1989; pp 1034-1035), AU2 (HCl salt, R¹=Me) (0.237 g), 50% KOH (0.305 ml), 30% H₂O₂ (0.115 ml) and EtOH (4.6 ml) were 65 heated in a sealed tube for 2 h. Reaction mixture was concentrated and extracted with CH₂Cl₂. The dried organic solution

was concentrated in vacuo to give a residue which was placed on preparative silica gel plates eluting with ${\rm CH_2Cl_2:}MeOH$ 9:1 to afford AU3 (R¹⁵=H, R¹⁶=H, R¹=Me).

The following compounds were synthesized using similar method:

Structure

ΝH

#

444

Obs.

m/e

266

MW

	HNNH		
446	NH NH	280	281

-continued

#	Structure	MW	Obs. m/e	5
447	NH NH S	28	85 286	10
				15

Method AV

$$R^3$$
 R^4
 O
 $AV1$
 R^2
 $AV1$

Boc N OH
$$R^{22}$$
 TFA DCM R^{2} R^{4} O $AV3$ R^{3} R^{4} O $AV4$ $AV4$

20 Method AV, Step 1:

In a microwave tube, AV1 (R³=Me, R⁴=Bu-i) (0.0012 g) and AV2 (R²²=OPh) (0.0059 nil) in isopropanol (2 ml) was placed in a microwave at 125° C. for 5 min. The reaction mixture was concentrated in vacuo to give AV3 (R³=Me, R^4 =i-Bu, R^2 =OPh).

Method AV, Step 2:

35

40

45

50

55

60

65

AV3 (R^3 =Me, R^4 =i-Bu, R^{22} =OPh) in CH₂Cl₂ (1 ml) and TFA (1 ml) was shaken for 2 h and the concentrated in vacuo and purified on Prep LCMS to afford AV4 (R^3 =Me, R^4 =i-Bu, R^{22} =OPh).

The following compounds were synthesized in a similar fashion.

#	Structure	MW	Obs. m/e
451	OH NH NH	378	379

15

457

458

456

R^2 N	n ll n. or n
\downarrow R^1	$R^{21}B(OH)_2$ Pd(dppf)Cl ₂
HN N	toluene, H ₂ O
\mathbb{R}^3	K ₂ CO ₃
(*)n	microwave
AW1	

Method similar to Method \boldsymbol{U} was used for this transformation. The following compounds were generated using similar methods.

The following compounds were synthesized in a similar fashion:

#	Structure	MW	Obs. m/e	40	
454	HN NH	341	342	45	459
				50	

35

50

#	Structure	MW	Obs. m/e
461	HN N O	294	295

Method AX

Cbz
$$R_4$$
 O Pd/C K_2CO_3 t -BuOOH $AX1$

$$AX2$$
 Cbz
 R_4
 $+$
 Cbz
 R_4
 $+$
 Cbz
 R_4
 $+$
 $AX3$
 $AX4$
 $AX4$

Method AX, Step 1.

A literature procedure was adapted. (J-Q Yu and E. J. Corey, *Organic Letters*, 2002, 4, 2727-2730).

684

To a 400 ml DCM solution of AX1 (n=1, R^4 =phenethyl) (52 grams) in a ice bath was added 5 g of Pd/C (5% w/w), 50 g of potassium carbonate and 100 ml of anhydrous t-BuOOH. The mixture was stirred in air for overnight before it was diluted with DCM and washed with water. The residue after removal of organic solvent and drying was chromatographed using ethylacetate/hexane to give 25 g of AX2 (n=1, R^4 =phenethyl).

Method AX, Step 2.

A solution of AX2 (4.5 g, n=1, R⁴=phenethyl) in MeOH (50 ml) was treated with 0.4 g of Sodium borohydride and the reaction was stirred for 30 min before the solvent was removed and residue chromatographed to give a mixture of AX3 (n=1, R⁴=phenethyl) and AX4 (n=1, R⁴=phenethyl) which was separated using an AS chiralpak column eluted with 8% IPA in Hexane (0.05% DEA) to give 2.1 g of AX3 (n=1, R⁴=phenethyl) as the first fraction and 2.2 g of AX4 (n=1, R⁴=phenethyl) as the second fraction.

Method AX, Step 3.

A 100 ml methanolic solution of AX4 (n=1, R⁴=phenethyl) (2.2 g) and 1,1'-bis(di-i-propylphosphino)ferrocene (1,5-cy-clooctadiene)rhodium (I) tetrafluoroborate (0.4 g, 0.57 mmol) was hydrogenated at 55 psi overnight. The reaction was concentrated, and the brown oil was purified by silica gel chromatography to yield AX6 (n=1, R⁴=phenethyl) (1.7 g).

The following compounds were generated using similar $_{\rm 30}\,$ method.

10

15

20

35

ОН

AY2

AX10

AX11

AX12

-continued

Method AY

A solution of AY1 (n=1; 1.5 g, 3.4 mmol), 5% Rh/C (1.5 g), 5% Pd/C (0.5 g) in AcOH (30 mL) was shaken in a Parr 65 apparatus at 55 psi for 18 hours. The vessel was flushed with N₂, and the reaction was filtered through a pad of celite. After

concentration AY2 was obtained which was carried on without purification. MS m/e: 312.0 (M+H).

AY3 was generated using similar method.

AY3 OH

Method AZ

-Boc 25 30 НОш

AZ2

AZ1 -Boc R16 AZ5 NaBH₃CN DCE, MeOH 2) TFA

NH NH R¹⁶ R¹⁶ AZ3 AZ4

Method AZ, Step 1

60 To a solution of $\overrightarrow{A}Z1$ (n=1, R¹=Me, R³=2-cyclohexylethyl) (0.441 g, 1.01 mmol), generated from AY2 using Method C and Method H Step 3, in DCM was added Dess-Martin Periodinane (0.880 g, 2.07 mmol). The reaction was stirred for 3 hours at room temperature. The reaction was quenched with H₂O and diluted with EtOAc. After removal of the organic phase, the aqueous layer was extracted with EtOAc $(3\times)$. The

combined organics were dried (Na $_2$ SO $_4$), filtered, and concentrated. The residue was purified by silica gel chromatography (0-100% EtOAc/hexanes) to yield AZ2 (n=1, R 1 =Me, R 3 =2-cyclohexylethyl) (0.408 g, 0.94 mmol, 93% yield). MS m/e: 434.1 (M+H).

Method AZ Step 2:

To a solution of AZ2 (n=1, R^1 =Me, R^3 =2-cyclohexylethyl) (0.011 g, 0.025 mmol) and AZ5 (R^{15} =H and R^{16} =m-pyridylmethyl) (0.0067 mL, 0.066 mmol) in DCE (1.8 mL) and MeOH (0.2 mL) was added AcOH (4 drops) and MP-cycanoborohydride resin (0.095 g, 2.42 mmol/g). The reaction was agitated for 40 hours at room temperature. The reaction

688

was treated with 7N NH₃/MeOH, and solution was filtered. After concentration, the residue was purified by silica gel HPLC (0-4% [(5% 7N NH₃/MeOH)/MeOH]/(50% DCM/hexanes) to furnish fraction 1 and fraction 2 which, after removal of solvent, were treated with 20% TFA in DCM for 3 h at r.t. to give AZ4 (n=1, R¹=Me, R³=2-cyclohexylethyl, R¹⁵=H and R¹⁶=m-pyridylmethyl) (0.005 g, 0.009 mmol) and the AZ3 (n=1, R¹=Me, R³=2-cyclohexylethyl, R¹⁵=H and R¹⁶=m-pyridylmethyl) (0.012 g, 0.022 mmol) respectively.

The following compounds were generated using similar methods:

#	Structure	MW	Obs. m/e
462	O NH NH	333	334
463	MH NH	348	349
464	NH NH NH	374	375
465	NH NH NH	374	375

			Obs.
#	Structure	MW	m/e
66	NH NH	374	375
7	H NH NH	374	375
	H H		
58	N NH NH	376	377
59	NH NH	376	377
70	H _{III}	376	377

	-continued		
#	Structure	MW	Obs. m/e
471	NH NH NH	376	377
472	H_2N NH NH H	377	378
473	H_2N N N N N N N N N N	377	378
474	HO NH	378	379
475	HO NH	378	379

			Obs.
#	Structure	MW	m/e
76	N NH NH	388	389
77	H NH	388	389
"	N NH NH	300	369
78	NH NH	388	389
	NIIIIII H		
79	N NH NH	388	389
80	H NH NH	388	389

	-continued		
#	Structure	MW	Obs. m/e
481	NH NH NH	388	389
482	NH NH NH	388	389
483	NH NH	388	389
484	NH NH	390	391
485	O N NH	390	391

	697 -continued	,100	
#	Structure	MW	Obs.
486	HN O NH NH	390	391
487	HN _M , NH	390	391
488	O NH NH NH NH H ₂ N	391	392

	-continued		
#	Structure	MW	Obs. m/e
490	H_2N NH H_1 NH	391	392
491	H_2N N N N N N N N N N	391	392
492	HO NH	392	393
493	HO NH	392	393
494	O N NH	392	393

-continued

	-continued		
#	Structure	MW	Obs. m/e
495	O N NH	392	393
.96	NH NH	402	403
97	NH NH	402	403
98	NH NH NH	402	403
499	O N NH	405	406

		4
-cont	111	1100

	-continued		
#	Structure	MW	Obs. m/e
500	O O N NH NH NH H	406	407
501	O NH NH NH	406	407
502	O NH NH	406	407
503 He	O NH NH	406	407
504 He	NH NH NH	406	407

	-continued		
#	Structure	MW	Obs
505	NH NH NH	410	411
506	O N NH	410	411
507	O N NH NH NH H	410	411
508	O NH NH NH	411	412

-continued			
#	Structure	MW	Obs. m/e
509	O NH NH NH	411	412
510		411	412

-continued

	-continued		
#	Structure	MW	Obs. m/e
513	NH NH NH	416	417
514	O NH	416	417
	H NIIIIII		
515	O NH NH NH	417	418
516	H NH NH NH	417	418
517	NH NH	424	425

-continued

	-continued		
#	Structure	MW	Obs. m/e
518	NH NH	424	425
519	O NH NH	424	425
520	NH NH NH	424	425
521	NH NH NH	425	426

	713 -continued	, ,	
#	Structure	MW	Obs. m/e
522	NH NH NH	425	426
523	O NH NH NH NH NH	425	426

	. •	
-con	fın	ned

	-continued		
#	Structure	MW	Obs. m/e
525	O NH NH NH NH NH	425	426
526	O NH NH NH NH NH	425	426
527	N NH NH	425	426
528	N NH NH	425	426

-continued

#	Structure	MW	Obs.
529	N NH NH	425	426
530	O N NH	425	426
531	O N NH	425	426
532	O N NH	425	426
533	HN NH	428	429

			4
-cont	าก	nee	7

	-continued		
#	Structure	MW	Obs. m/e
534	HN NH	428	429
535	NH NH NH	439	440
536	NH NH NH	439	440
537	NH NH NH	442	443
538	NH NH NH	442	443

-continued

	-continued		
#	Structure	MW	Obs. m/e
539	NH NH	442	443
540	N NH NH	442	443
	H H		
541	NH NH NH	444	445
542	O N NH	445	446
543	O N NH NH	459	460

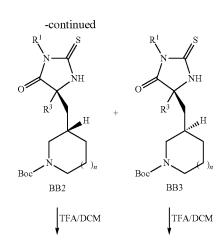
-continued

#	Structure	MW	Obs. m/e
544	O N NH NH	459	460

Method BA CO₂Me OH Socious BA1 BA2 BA2 BA3 Socious BA3

Method BA, Step 1:

BA1, prepared according to a literature procedure (Terao, Y; Kotaki, H; Imai, N and Achiwa K. Chemical and Pharmaceutical Bulletin, 33 (7), 1985, 2762-2766) was converted to BA2 using a procedure described by Coldham, I; Crapnell, K. M; Fernandez, J-C; Moseley J. D. and Rabot, R (*Journal of Organic Chemistry*, 67 (17), 2002, 6185-6187).


¹H NMR (CDCl₃) for BA2: 1.42 (s, 9H), 4.06 (d, 4H), 4.09 (s, 1H), 4.18 (s, 2H), 5.62 (d, 1H).

Method BA, Step 2:

BA3 was generated from BA2 using a literature procedure described by Winkler J. D.; Axten J.; Hammach A. H.; Kwak, Y-S; Lengweiler, U.; Lucero, M. J.; Houk, K. N. (Tetrahedron, 54 1998, 7045-7056). Analytical data for compound ⁵⁰ BA3: MS m/e: 262.1, 264.1 (M+H). ¹H NMR (CDCl₃) 1.43 (s, 9H), 3.98 (s, 2H), 4.11 (d, 4H), 5.78 (d, 1H).

Method BB

$$H_2N$$
 R^3
 $SCN-R^1$
 Boc
 $BB1$

Method BB, Step 1;

Compound BB1 (n=1, R¹=Me, R³=cyclohexylethyl) was converted to BB2 (n=1, R¹=Me, R³=cyclohexylethyl) and BB3 (n=1, R¹=Me, R³=cyclohexylethyl) which were separated via a silica gel column eluted with EtOAc in Hexane (0-15%).

60 Method BB, Step 2;

Compound BB4 (n=1, R^1 =Me, R^3 =cyclohexylethyl) was generated from BB2 (n=1, R^1 =Me, R^3 =cyclohexylethyl) using 20% TFA in DCM.

The following compounds were generated using similar method:

Method BC, Step 1;

BB5 Compound BC2 (n=1, R^1 =Me, R^3 =cyclohexylethyl and R^{15} =m-Pyridyl) was obtained from BC1 (n=1, R^2 =Me, R^3 =cyclohexylethyl) using method L step 2.

Method BC, Step 2;

Compound BC3 (n=1, R^1 =Me, R^3 =cyclohexylethyl and R^{15} =m-Pyridyl) was obtained from BC2 (n=1, R^1 =Me, R^3 =cyclohexylethyl and R^{15} =m-Pyridyl) using method L step 3.

The following compounds were generated using a similar method:

BB6

15

20

BB7 ₂₅

553

554

555

30

#	Structure	MW	Obs. m/e
552	HN N O	374	375

. •	- 4
-continu	ed

-continued				-continued			
#	Structure	MW		#	Structure	Obs. MW m/e	
556	O NH NH	388	389 5	560	O NH NH NH	402 403	
	7		20	561 0	$HN \longrightarrow N \longrightarrow O$	402 403	
557	HNNNO	390	391	5	N H	\supset	
			30		NH NH NH	402 403	
			40	0		<u>ا</u>	
558	HN N O	390	391 4:			404 405	
559	$HN \longrightarrow N \longrightarrow 0$	402		5 564		404 405	
	H H H		60			NH	
	() To		6:	5			

-con	tir	111	ed

-co		

#	Structure	MW	Obs.		#	Structure	MW	Obs. m/e
565	NH NH NH	404	405	10	569	NH NH NH	411	412
				15 20	570	NH NH	411	412
566	NH NH NH	404	405	25		O NH NH NH H		
567	O NH	410	411	30				
307	O NH NH H	410	411	40	571	NH NH	411	412
				45 50		H O		
568	O NH NH	410	411	55	572	O N NH Hun, NH H	411	412
	HIIIII			60				

-continued

	Continued				continued	
#	Structure	MW	Obs. m/e	# 5	Structure	Obs. MW m/e
573	O NH NH NH	411	412	577	HN N O	416 417
574		411	412	578 20	NH NH	416 417
	NH NH NH			25 30	O N N N N N N N N N N N N N N N N N N N	
575		416		35 579	N—NH	424 425
	HNNNO			40 45	O NH NH	
				50		
576	NH NH	416	417	580 55	NH NH NH	424 425
				60 65		

	. •	- 1
-CO	ntın	1100

	-continued				-continued	
#	Structure	MW	Obs. m/e	5	Structure	Obs. MW m/e
581	O NH NH NH	424	425	584	O NH NH NH	425 426
				585 525	NH NH NH	425 426
582	NH NH	424	423	30		
				586 40 45	O N NH N	425 426
			;	50	N	
583	NH NH	425	426	587 55	NH NH	425 426
	ON		1	60	O N N	
				<i>45</i>		

-continued

Structure

MΗ

ΜV		Obs. m/e	5	,
42	5	426		
			10	
			15	
			20	

BE1

-continued

Method BD, Step 1;

Compound BD2 (n=1, R¹=Me, R³=cyclohexylethyl and R¹⁵=Ph) was obtained from BD1 (n=1, R²=Me, R³=cyclohexylethyl) using Method N, Step 1.

Method BD, Step 2;

595

Compound BD3 (n=1, R1=Me, R3=cyclohexylethyl and 25 $R^{15}\!\!=\!\!Ph)\quad was \quad obtained \quad from \quad BD2 \quad (n\!\!=\!\!1, \quad R^1\!\!=\!\!Me,$ R³=cyclohexylethyl and R¹⁵=m-Pyridyl) using Method N,

The following compounds were generated using a similar $_{30}$ method:

Structure

Ο.

	MW	Obs. m/e	35	Method formation
	440	441		lar method
NH			40	#

45

65

NH

Obs. $MW \quad m/e$

BE2

d similar to Method M was adapted for these transns. The following compounds were generated simids.

Structure

				50
596	$0 \xrightarrow{N} NH$	460	461	55
	N H			60

15

Obs.

m/e

377

MW

376

BF₃ BF1

Method BF, Step 1:

Method similar to Method T, Step 1 was used for the synthesis of BF2 (n=1, R^1 =Me and R^3 =phenethyl, R^{15} =H and R^{35} 603 R¹⁶=n-propyl).

Method BF, Step 2:

599

Method similar to method L Step 3 was adapted for this transformation.

The following compounds were generated using similar methods.

Structure

	HN N O			50	60
600		390	391	55	
_	O NH NH			60	
				65	

#	Structure	MW	Obs. m/e	
605	O NH NH	397	398	' <u>5</u>
	HIII			1
	$\mathbb{Z}^{\mathbb{N}}$			1
606	O NH NH	397	398	2
	Hum			2
				3
507	NH NH	411	412	3
	O NH			4
	N N			4

5
$$R^3$$
 Step 1

10 R^3 Step 1

20 R^{15} R^3 R^3

BG 2

Method BG:

To a solution of BG1 (n=1, R^3 =cyclohexylethyl) (0.136 g, 0.31 mmol) in CH_2Cl_2 was added 2,6-lutidine, AgOTf, and butyl iodide. The reaction was stirred at room temperature for 96 hours. The reaction was filtered through a pad of Celite, and the solution was concentrated. The residue was purified by silica chromatography (0-100% EtOAc/hexanes) to furnish BG2 (n=1, R^3 =cyclohexylethyl, R^{15} =n-butyl) (0.124 g, 0.25 mmol, 80% yield). MS m/e: 426.1 (M-OBu).

The following compound was prepared using similar method: $$_{\rm BG3}$$

Method BH

$$R^{15}$$
 R^{15}
 R

Method BH, Step 1.

Compound BH1 (n=1, R^3 =cyclohexylethyl and R^{15} =n-butyl) (0.060 g, 0.12 mmol) and 5% Pd(OH)₂/C (0.040 g) in EtOAc (1 mL)/MeOH (0.2 mL) was stirred under an atmosphere of H₂ for 20 hours at room temperature. The reaction was filtered through a pad of Celite, and the solution was concentrated. The crude product mixture BH2 (n=1, R^3 =cyclohexylethyl and R^{15} =n-butyl) was carried on to the next step without purification.

Method BH, Step 2.

A solution of BH2 (n=1, R^3 =cyclohexylethyl and R^{15} =n-butyl) was converted to a product mixture of BH4 and BH3 30 using a method similar to Method C Step 1. The mixture was purified by silica gel chromatography using EtOAc/hexanes to yield BH4 (n=1, R^2 =Me, R^3 =cyclohexylethyl and R^{15} =n-butyl) (0.032 g, 0.078 mmol, 56% yield) and BH3 (n=1, R^2 =Me, R^3 =cyclohexylethyl and R^{15} =n-butyl) (0.008 g, 0.020 mmol, 14% yield). For BH4 (n=1, R^2 =Me, R^3 =cyclohexylethyl and R^{15} =n-butyl), MS m/e: 409.1 M+H). For BH3 (n=1, R^2 =Me, R^3 =cyclohexylethyl and R^{15} =n-butyl), MS m/e: 409.1 (M+H).

Method BH, Step 3.

Compound BH4 (n=1, R²=Me, R³=cyclohexylethyl and R¹⁵=n-butyl) (0.032 g, 0.078 mmol) was converted to BH5 45 (n=1, R²=Me, R³=cyclohexylethyl and R¹⁵=n-butyl) (0.016 g, 0.043 mmol, 57% yield) using a method similar to Method A, step 3. MS m/e: 392.1 (M+H).

The following compound was generated using a similar method:

Structure MW m/e 608 ON NH NH NH NH

-continued

#	Structure	MW	Obs. m/e
609	O N N N N N N N N N N N N N N N N N N N	391 H	392

Method BI

A solution of BI1(0.020 g, 0.040 mmol) in DCM (1 mL) was degassed using freeze/pump/thaw (4x) method. At the end of the fourth cycle Crabtree's catalyst was added and the system was evacuated. While thawing, the system was charged with hydrogen gas, and the reaction was stirred at 20 room temperature for 16 hours under an H₂ atmosphere. The reaction was concentrated, and the brown oil was purified by reverse phase HPLC to furnish BI2(0.011 g, 0.022 mmol, 55% yield). MS m/e: 368.2 (M+H).

Method BJ

Method BJ, Step 1

A mixture of 2 ml dioxane solution of BJ1 (R1=Me, 65 R³=Me) (140 mg, 0.5 mmol) generated using Method BK Steps 1 & 2, indole (1.2 eq), potassium t-Butoxide (1.4 eq),

ВЈЗ

746

Pd₂(dba)₃ (0.02 eq) and 2-di-t-butylphospinobiphenyl (0.04 eq) in a sealed tube was irradiated in a microwave oven at 120° C. for 10 min and the mixture was separated via a silica gel column to give BJ2(R¹=Me, R³=Me) (0.73 mg).

Method BJ, Step 2

 $BJ2(R^1=Me, R^3=Me)$ was converted to BJ3 ($R^1=Me$, R³=Me) using Method BK, Steps 3 & 4. Obs. Mass for BJ3 $(R^1=Me, R^3=Me): 319.2.$

#	Structure	MW	Obs. m/e
614 C	NH NH NH	318	319

Method BK

Method BK, Step 1:

Hydantoin BK2 (R³=N-benzyl-3-piperidyl, R⁴=n-Bu) was prepared according to Method D, Step 1 from the corresponding ketone BK1 (R³=N-benzyl-3-piperidyl, R⁴=n-Bu). Analytical data for BK2 (R³=N-benzyl-3-piperidyl, R⁴=n-Bu): (M+H)=330.1.

Method BK, Step 2:

To a suspension of hydantoin BK2 (R³=N-benzyl-3-piperidyl, R^4 =n-Bu) (138 mg, 0.419 mmol) in DMF (1.5 ml) was added dimethylformamide dimethylacetal (0.11 ml, 0.84

mmol). The resulting mixture was heated in a 100° C. oil bath for 16 h and then cooled to RT and concentrated under vacuum. This crude residue was purified by column chromatography (MeOH/DCM) to give product BK3 (R³=N-benzyl-3-piperidyl, R⁴=n-Bu) (140 mg, 0.408 mmol, 97%), (M+H)=344.1.

Method BK, Step 3:

To a solution of a portion of BK3 ($R^3=N$ -benzyl-3-piperidyl, $R^4=n$ -Bu) (70 mg, 0.20 mmol) in toluene (1 ml) was added Lawesson's reagent (107 mg, 0.26 mmol). The resulting mixture was placed in an oil bath at 60° C. for 16 h and then at 100° C. for 24 h. After cooling to RT, the reaction was quenched by addition of several drops of 1 N HCl and then diluted with EtOAc and 1 N KOH. The phases were separated and the aqueous layer extracted with EtOAc (2×). The organic portions were combined, washed with brine, dried over 20 MgSO₄, filtered, and concentrated. This crude residue was purified by preparative TLC (1000 μ m silica, 15% EtOAc/DCM) to give two separated diastereomers BK4 ($R^3=N$ -benzyl-3-piperidyl, $R^4=n$ -Bu) (24 mg, 0.067 mmol, 33%, MS: (M+H)=360.2) and BK5 ($R^3=N$ -benzyl-m-piperidyl, $R^4=n$ -Bu) (22 mg, 0.062 mmol, 31%, MS: (M+H)=360.2).

Method BK, Step 4:

Diastereomer BK5 (R³=N-benzyl-3-piperidyl, R⁴=n-Bu) was treated with NH₄OH (2 ml) and t-butyl hydrogen peroxide (70% aqueous, 2 ml) in MeOH (4 ml) for 24 h. After concentration, the crude sample was purified by preparative TLC (1000 mm silica, 7.5% 7N NH₃/MeOH in DCM). The resulting sample was dissolved in DCM (1 ml), treated with 4N HCl in dioxane for 5 min, and finally concentrated to give diastereomeric products BK7 (R³=N-benzyl-3-piperidyl, R^4 =n-Bu) (12 mg, 0.029 mmol, 43%). ¹H NMR (CD₃OD) δ ⁴⁰ 7.60 (m, 2H), 7.49 (m, 3H), 4.39 (ABq, J_{AB} =12.8 Hz, Δv_{AB} =42.1 Hz, 2H), 3.69 (m, 1H), 3.39 (br d, J=13.6 Hz, 1H), 3.20 (s, 3H), 2.96 (m, 2H), 2.45 (m, 1H), 1.99 (m, 1H), 1.92-1.78 (m, 3H), 1.68 (br d, J=12.4 Hz, 1H), 1.50 (dq, 45) $J_{a}=3.6 \text{ Hz}, J_{a}=12.8 \text{ Hz}, 1\text{H}), 1.36-1.22 \text{ (m, 4H)}, 1.03 \text{ (m, 1H)},$ 0.90 (t, J=7.2 Hz, 3H). LCMS: t_R (doubly protonated)=0.52 min, (singly protonated)=2.79 min; (M+H) for both peaks=343.2.

The following compounds were synthesized using similar methods:

#	Structure	MW	Obs. m/e	55
615	NH 	281	282	
	NH			60
	Br			65

O NH BC 1) R¹⁵
O NH H₂N
BL3
NaBH₃CN
DCE, MeOH
2) TFA

To a 2 ml Methanolic solution of BL1 (n=1, R^3 =cyclohexylethyl, R^1 =Me) (10 mg) was added BL3 (HCl salt, R^{15} =H, 2 eq) and NaOAc (2 eq) and the mixture was heated to 60 C for 16 h. After removal of solvent, the residue was treated with 20% TFA in DCM for 30 min before the solvent was evaporated and residue purified using a reverse phase HPLC to give BL2 (n=1, R^3 =cyclohexylethyl, R^1 =Me and R^{15} =H).

The following compounds were synthesized using similar methods.

#	Structure	MW	Obs. m/e
616	HOm. N	348	349
617	On. N	388	389

Method BM

Method BM, Step 1:

To a toulene solution (3 ml) of BM1 (n=1, 50 R³=cyclohexylethyl, R²=Me) (0.050 mg) was added 1.5 eq of diphenylphosphorylazide and 1.5 eq of DBU and the solution was stirred at r.t. overnight. The reaction mixture was diluted with EtOAc and washed with 1% aq HOAc before the organic layer was dried and solvent evaporated. The residue was 55 chromatographed using EtOAc/Hex to give a product that was treated with triphenylphosphine (2 eq) in THF (1% water) overnight to give BM2 (n=1, R³=cyclohexylethyl, R²=Me) after reverse phase purification.

Method BM Step 2:

To a DCM solution of BM2 (n=1, R³=cyclohexylethyl, R²=Me) was added 1 eq of benzyloxycarbonyl-OSu and the reaction was stirred overnight before the solvent was evaporated and residue chromatographed to give BM3 (n=1, R³=cyclohexylethyl, R²=Me).

Compound BM4 (n=1, R³=cyclohexylethyl, R²=Me) and BM5 (n=1, R³=cyclohexylethyl, R²=Me) were generated

from BM2 (n=1, R^3 =cyclohexylethyl, R^2 =Me) and BM3 (n=1, R^3 =cyclohexylethyl, R^2 =Me) through Boc-deprotection.

The following compounds were synthesized using similar method:

618 HN NH NH H ₂ N	332	333
619 HN NH O H	468	469
Method BN		

Cl Cbz—NH O

BN1
$$C_1$$
 H_2N $BN2$

A mixture of Pd(OAc)₂ (9 mg), triethylamine (17 microliter), triethylsilane (11 microliter) and BN1 (20 mg) in DCM was hydrogenated at 1 atm at rt for 1.5 h before the reaction was filtered through a Celite pad to give BN2 after removal of solvent.

Obs.

The following compounds were generated through boc-

deprotection of the corresponding starting material using 50% TFA in DCM, rt 30 min.		g 5 _	#	Structure	MW	m/e		
				_	624	$^{\mathrm{H_2N}}$	288	289
#	Structure	MW	Obs. m/e	10				
620	HN	266	267	-				
	O NH NH			15		O NH NH		
	ŇH			20				
621	H	266	267	25	625	N—NH NH	320	321
	O NH NH			30		HN		
				35	626	N-W	320	321
622	H ₂ N	274	275	40		O NH		
	NH			45		HN		
	O NH			50		Method BP		
623	$^{ m NH_2}$	274	275	55		$ \begin{array}{c} \text{BOC} \\ N \longrightarrow N \\ \end{array} $		

15

BOO

Method BP, Step 1

To a solution of BP1 (n=1, $R^1=Me$, $R^2=H$, R³=cyclohexylethyl) (0.012 g, 0.028 mmol) in CH₂Cl₂ (0.5 mL) was added 2,6-lutidine (0.010 mL, 0.086 mmol), AgOTf (0.024 g, 0.093 mmol), and benzyl bromide (0.010 mL, 0.084 mmol). The reaction was stirred at room temperature for 16 hours. The solid was filtered, and after concentration the residue was purified by reverse phase HPLC to yield BP2 (n=1, R¹=Me, R²=H, R³=cyclohexylethyl) (0.010 g, 0.019 mmol). MS m/e: 526.1 (M+H).

Method BP, Step 2

BP3 (n=1, R¹=Me, R²=H, R³=cyclohexylethyl) was prepared from BP2 (n=1, R¹=Me, R²=H, R³=cyclohexylethyl) using 30% TFA/DCM. MS m/e: 426.1 (M+H).

Method BQ Step 1:

55

BQ1 was prepared according to Method AZ.

To a solution of BQ1 (n=1, R^1 =Me, R^2 =H, 60 R^3 =cyclohexylethyl) (0.004 g, 0.007 mmol) in CH_2Cl_2 (0.3 mL) was added DIEA (0.007 mL, 0.040 mmol), acetic acid (0.001 mL, 0.017 mmol), HOBt (0.003 g, 0.019 mmol), and EDC1 (0.003 g, 0.016 mmol). The reaction was stirred at room temperature for 16 hours. The reaction was concentrated and purified by reverse phase HPLC to provide BQ2 (n=1, R^1 =Me, R^2 =H, R^3 =cyclohexylethyl) (0.003 g, 0.005 mmol). MS m/e: 627.1 (M+H).

15

Method BQ Step 2:

BQ2 (n=1, $R^1\!\!=\!\!Me,\,R^2\!\!=\!\!H,\,R^3\!\!=\!\!$ cyclohexylethyl) (0.003 g, 0.005 mmol) was treated with 20% TFA/CH $_2$ Cl $_2$ (1 mL) in the presence of PS-thiophenol resin (0.030 g, 1.42 mmol/g) for 3 hours. The solution was filtered and concentrated to produce 5 603 (n=1, R^1 =Me, R^2 =H, R^3 =cyclohexylethyl) (0.002 g, 0.005 mmol). MS m/e: 377.2 (M+H).

#	Structure	MW	Obs. m/e
528	$O = \bigvee_{\substack{N \\ H}} \bigvee_{\substack{N \\ H}}$	376	377

Method BR

$$R^1$$
 R^2
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

-continued

$$O = S = O$$

$$HN = O$$

$$BR3$$

$$R^{1}$$

$$R^{3}$$

$$R^{3}$$

Method BR, Step 1:

To a solution of BR¹ (n=1, R¹=Me, R²=H, R³=cyclohexylethyl) (0.004 g, 0.007 mmol) in pyridine (0.2 ml) was added DMAP (a few crystals) and methylsulfonyl chloride (3 drops). The reaction was stirred at room temperature for 6 days. The reaction was quenched with water and diluted with $\check{C}H_2Cl_2$. The organic layer was removed, and the aqueous phase was extracted with CH₂Cl₂ (3×). After concentration, the brown residue was purified by reverse phase yield BR^2 to $(n=1, R^1=Me,$ R^3 =cyclohexylethyl) (0.003 g, 0.004 mmol). MS m/e: 663.2 $(M+\dot{H}).$

Method BR, Step 2:

BR³ (n=1, R¹=Me, R²=H, R³=cyclohexylethyl) was prepared from BR² (n=1, R¹=Me, R²=H, R³=cyclohexylethyl) following a procedure similar to Method BQ Step 2. MS m/e: 413.1 (M+H).

	#	Structure	MW	Obs. m/e
35	629	O NH	412	413
4 0				
45				

Method BS

15

BS3

Method BS Step 1:

To a solution of BS1 (n=1, R^1 =Me, R^2 =H, 45 R^3 =cyclohexylethyl) (0.003 g, 0.006 mmol) in CH_2Cl_2 (0.3 mL) was added phenyl isocyanate (2 drops). The reaction was stirred at room temperature for 16 hours. The reaction was concentrated and purified by reverse phase HPLC to provide BS2 (n=1, R^1 =Me, R^2 =H, R^3 =cyclohexylethyl) (0.002 g, 0.002 mmol). MS m/e: 823.5 (M+H).

Method BS Step 2:

Compound BS2 (n=1, R^1 =Me, R^2 =H, R^3 =cyclohexylethyl) was subjected to the same conditions in Method BQ Step 2. The crude mixture prepared above was treated with LiOH (0.006 g, 0.25 mmol) in MeOH (0.3 mL) for 2 hours. The reaction was concentrated, and the residue was purified by reverse phase HPLC to furnish BS3 (n=1, R^1 =Me, R^2 =H, R^3 =cyclohexylethyl) (0.0012 g, 0.002 mmol). MS m/e: 454.1 (M+H).

Method BT

$$R_1$$
 NH R_1 NH N NH N

Method BT:

To a round bottom flask were added compound BT1 $(R^1=Me, R^3=Me)$ (100 mg, 0.29 mmol), anhydrous toluene (2 ml), 3-aminopyridine (55 mg, 0.58 mmol) and 2-(di-tertbutyl phosphino) biphenyl (17 mg, 0.058). The solution was 40 then degassed by N₂ for 2 minutes before NaO-t-Bu (61 mg, $0.638 \,\mathrm{mmol}$) and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (27 mg, $0.029 \,\mathrm{mmol}$) were added. The reaction was stirred at 80° C. for 22 hours. After cooling down to room temperature, the reaction was poured to cold water and extracted by CH₂Cl₂. The combined organic layer was then dried over Na₂SO₄. After the filtration, the concentrated residue was separated by TLC ($CH_3OH:CH_2Cl_2=1:10$) and reverse phase HPLC (10%-100% acetonitrile in water w/0.1% formic acid) to produce the desired compound BT2 $(R^1=Me, R^3=Me \text{ and } R^{21}=m\text{-pyridyl})$ as a formate salt (23.6) mg, white solid, 20%). ¹HNMR (CDCl₃) δ 7.50-6.90 (m, 13H), 3.14 (s, 3H) MS m/e 358 (M+H).

-conti	nued

-continued

#	Structure	MW	Obs. m/e	_	#	Structure	Obs. MW m/e
632	HN NH	156	357	10	635	HN	357 358
633	HN NH	357	358	15 20	N N	J H	
634	N NH NH NH NH NH	357	358	25 30 35	636 N	HN HN	358 359
	TFA HN $\int_{n}^{R^{3}}$	S -NH		Cbz	O M		NBoo NN NBoo NBoo NBoo NBoo
MeO~	R^{1} NH NH R^{3} NH R^{3}	Med	0		O O O O O O O O O O O O O O O O O O O	NH NBoc	N N N N N N N N N N

762 -continued

To a round bottomed flask containing BU1 (m=1, n=1, R^1 =Me, R^3 =Cyclohexylethyl) (99 mg, 0.307 mmol) of the trifluroacetic acid salt of pyrollidine derivative in 5 ml of DCM was added (86 μ L, 0.614 mmol) of triethylamine followed by addition of (76 mg, 0.307 mmol) N-(benzyloxycarbonyloxy)succinimide. Stir at room temperature for 18 h. Dilute the mixture with DCM and extract with sat'd NaHCO₃ soln, then water. Collect the organic portion and dry over Na₂SO₄, filter and concentrate in vacuo. Purify by silica gel 10 chromatography (eluting with 0 to 60% EtOAc/hexanes) to yield BU2 (m=1, n=1, R^1 =Me, R^3 =Cyclohexylethyl) (130 mg, 0.284 mmol, 93% yield). MS m/e: 458.1 (M+H).

Method BU, Step 2,

To a solution of BU2 (m=1, n=1, R¹=Me, 15 R³=Cyclohexylethyl) (130 mg) in 1 ml of MeOH in a reaction vial was added 0.5 ml of a solution of 70% tBuOOH in water and 0.5 ml of NH₄OH. Seal the vial and shake at room temperature for 72 h. The mixture was concentrated in vacuo. The mixture was diluted with 1 ml of MeOH and a mixture 30 20 mg of NaHCO₃ and Boc₂O (87 mg, 0.398 mmol) were added. The solution mixture was stirred at room temperature for 18 h before it was concentrated and the residue purified by silica gel chromatography using EtOAc/hexanes to yield the BU3 (m=1, n=1, R¹=Me, R³=Cyclohexylethyl) (90 mg, 0.167 25 mmol, 58% yield). MS m/e: 541.1, 441.1 (M+H).

Method BU, Step 3,

A solution of BU3 (m=1, n=1, R¹=Me, R³=Cyclohexylethyl) (90 mg, 0.167 mmol) in 5 ml of MeOH was hydrogenated using 100 mg of Pd(OH)₂—C (20% w/w) ³⁰ at 1 atm for 1 h. The reaction mixture was filtered through a pad of diatomaceous earth and the pad was washed with MeOH. Concentration of the collected organic portions in vacuo yielded BU4 (m=1, n=1, R¹=Me, R³=Cyclohexylethyl) (47 mg 0.116 mmol, 70% yield). MS ³⁵ m/e: 407.1 (M+H).

Method BU, Step 4,

To a vial containing 10 mg of powdered 4 4' molecular sieves was added 3-methoxyphenyl boronic acid (60 mg, 0.395 mmol) then 3 ml of anhydrous MeOH. To this mixture 40 was added pyridine (100 ml, 0.650 mmol), Cu(OAc)₂ (7 mg, mmol), and BU4 (m=1, n=1, $R^1=Me$, R³=Cyclohexylethyl) (7.83 mg, 0.019 mmol) and the mixture was stirred at room temperature for 96 h before it was quenched with 0.25 ml of 7N ammonia in methanol solution. 45 The reaction mixture was extracted with water and DCM and the organic layers were dried and concentrate in vacuo. The residue was purified via a reverse-phase HPLC to give a product which was treated with 5 ml of 40% of TFA in DCM for 5 h. After removal of the volatiles, the residue was purified 50 using a reverse phase HPLC system to furnish BU5 (m=1, n=1, R¹=Me, R³=Cyclohexylethyl and R²¹=m-MeOPh) as the formic acid salt (0.7 mg, 0.0015 mmol, 30.1% yield). MS m/e: 413.1 (M+H).

#	Structure	MW	Obs. m/e	
637	NH NH NH	258	359	
	N			

Method BV

$$R^3$$
 CHO + R^4 BV3

 R^3 CHO R^4 BV5

Method BV Step 1:

The method was adapted from a literature procedure (Page et al., *Tetrahedron* 1992, 35, 7265-7274)

A hexane solution of nBuLi (4.4 mL, 11 mmol) was added to a -78 C solution of BV2 (R⁴=phenyl) (2.0 g, 10 mmol) in THF (47 mL). After 60 minutes at -78 C, a solution of BV1 (R³=3-bromo-4-fluorophenyl) (2.24 g, 11 mmol) was added and the reaction slowly warmed to RT over 18 h. The reaction mixture was quenched with saturated ammonium chloride solution and extracted with CH₂Cl₂ (2×), dried over MgSO4 and concentrated under vacuum. The resulting oil was subjected to silica gel chromatography using 4-10% EtOAc/Hexanes to give a white solid BX3 (R³=3-bromo-4-fluorophenyl and R⁴=phenyl) (1.69 g, 4.23 mmol, 42%). ¹H NMR (CDCl₃) δ 7.61 (m, 2H), 7.27 (m, 3H), 6.94 (m, 1H), 6.92 (m, 1H), 6.68 (m, 1H), 3.15 (bs, 1H), 2.57-2.73 (m, 4H), 1.89 (m, 55 2H).

Method BV Step 2:

A solution of BV3 (R^3 =3-bromo-4-fluorophenyl and R^4 =phenyl) (1.69 g, 4.23 mmol) in acetone (40 mL) was slowly added via addition funnel to a 0° C. solution of N-bromosuccinimide (NBS, 11.3 g, 63.3 mmol) in acetone (200 mL) and water (7.5 mL). The mixture was slowly warmed to RT, and quenched after 60 minutes with 10% aqueous Na₂SO₃. After diluting with CH_2Cl_2 , the layers were separated, and the organic layer washed with water (2×), brine (1×) and dried over MgSO₄. Concentration under vacuum afforded an oil which was subjected to silica gel chromatography using 5% EtOAc/Hexanes to give a solid BV4 (R^3 =3-

60

65

Method BX Step 3:

BV5 (R^3 =3-bromo-4-fluorophenyl and R^4 =phenyl and S^4 =Me and S^2 =H) was prepared from BV4 (S^3 =3-bromo-4-fluorophenyl and S^4 =phenyl) using Method AS, Step 4.

#	Structure	MW	Obs. m/e	
639	N——NH	261	362	
В				
640	N—NH	261	NA	
F	F			

Human Cathepsin D FRET Assay

This assay can be run in either continuous or endpoint format. Cathepsin D is an aspartic protease that possesses low 35 primary sequence yet significant active site homology with the human aspartic protease BACE1. BACE1 is an amyloid lowering target for Alzheimer's disease. Cathespin D knockout mice die within weeks after birth due to multiple GI, immune and CNS defects.

The substrate used below has been described (Y. Yasuda et al., J. Biochem., 125, 1137 (1999)). Substrate and enzyme are commercially available. A Km of 4 uM was determined in our lab for the substrate below under the assay conditions described and is consistent with Yasuda et al.

The assay is run in a 30 ul final volume using a 384 well Nunc black plate. 8 concentrations of compound are preincubated with enzyme for 30 mins at 37 C followed by addition of substrate with continued incubation at 37 C for 45 mins. The rate of increase in fluorescence is linear for over 1 50 h and is measured at the end of the incubation period using a Molecular Devices FLEX station plate reader. K is are interpolated from the IC50s using a Km value of 4 uM and the substrate concentration of 2.5 uM.

Reagents

Na-Acetate pH 5

1% Brij-35 from 10% stock (Calbiochem)

DMSO

Purified (>95%) human liver Cathepsin D (Athens Research & Technology Cat#16-12-030104)

Peptide substrate (Km=4 uM) Bachem Cat # M-2455

Pepstatin is used as a control inhibitor (Ki~0.5 nM) and is available from Sigma.

Nunc 384 well black plates

Final Assay Buffer Conditions

100 mM Na Acetate pH 5.0

0.02% Brij-35

1% DMSO

764

Compound is diluted to 3× final concentration in assay buffer containing 3% DMSO. 10 ul of compound is added to 10 ul of 2.25 nM enzyme (3×) diluted in assay buffer without DMSO, mixed briefly, spun, and incubated at 37 C for 30 mins. 3× substrate (7.5 uM) is prepared in 1× assay buffer without DMSO. 10 ul of substrate is added to each well mixed and spun briefly to initiate the reaction. Assay plates are incubated at 37 C for 45 mins and read on 384 compatible fluorescence plate reader using a 328 nm Ex and 393 nm Em.

Compounds of the present invention exhibit hCathD Ki data ranges from about 0.1 to about 500 nM, preferably about 0.1 to about 100 nM more preferably about 0.1 to about 75 nM

The following are examples of compounds that exhibit hCathD Ki data under 75 nM.

-continued

structure structure

20

-continu	- 4

	. •	4
_	continue	d

-continued structure structure 10 HN= NH 15 20 25 30 //NH 35 NH 45 50 55 60 HN=

structure

The following compound

has a hCath D Ki value of 0.45 nM.

BACE-1 Cloning, Protein Expression and Purification

A predicted soluble form of human BACE1 (sBACE1, corresponding to amino acids 1-454) was generated from the full length BACE1 cDNA (full length human BACE1 cDNA in pCDNA4/mycHisA construct; University of Toronto) by 40 PCR using the advantage-GC cDNA PCR kit (Clontech, Palo Alto, Calif.). A HindIII/PmeI fragment from pCDNA4sBACE1myc/His was blunt ended using Klenow and subcloned into the Stu I site of pFASTBACl(A) (Invitrogen). A sBACE1 mycHis recombinant bacmid was generated by 45 transposition in DH10Bac cells (GIBCO/BRL). Subsequently, the sBACE1 mycHis bacmid construct was transfected into sf9 cells using CellFectin (Invitrogen, San Diego, Calif.) in order to generate recombinant baculovirus. Sf9 cells were grown in SF 900-II medium (Invitrogen) supplemented 50 with 3% heat inactivated FBS and 0.5× penicillin/streptomycin solution (Invitrogen). Five milliliters of high titer plaque purified sBACEmyc/His virus was used to infect 1 L of logarithmically growing sf9 cells for 72 hours. Intact cells were pelleted by centrifugation at 3000×g for 15 minutes. The supernatant, containing secreted sBACE1, was collected and diluted 50% v/v with 100 mM HEPES, pH 8.0. The diluted medium was loaded onto a Q-sepharose column. The Q-sepharose column was washed with Buffer A (20 mM HEPES, pH 8.0, 50 mM NaCl).

Proteins, were eluted from the Q-sepharose column with Buffer B (20 mM HEPES, pH 8.0, 500 mM NaCl). The protein peaks from the Q-sepharose column were pooled and loaded onto a Ni-NTA agarose column. The Ni-NTA column was then washed with Buffer C (20 mM HEPES, pH 8.0, 500 mM NaCl). Bound proteins were then eluted with Buffer D 65 (Buffer C₊250 mM imidazole). Peak protein fractions as determined by the Bradford Assay (Biorad, CA) were con-

770

centrated using a Centricon 30 concentrator (Millipore). sBACE1 purity was estimated to be -90% as assessed by SDS-PAGE and Commassie Blue staining. N-terminal sequencing indicated that greater than 90% of the purified sBACE1 contained the prodomain; hence this protein is referred to as sproBACE1.

Peptide Hydrolysis Assay

The inhibitor, 25 nM EuK-biotin labeled APPsw substrate (EuK-KTEEISEVNLDAEFRHDKC-biotin (SEQ ID NO: 1); CIS-Bio International, France), 5 µM unlabeled APPsw peptide (KTEEISEVNLDAEFRHDK; (SEQ ID NO: 2) American Peptide Company, Sunnyvale, Calif.), 7 nM spro-BACE1, 20 mM PIPES pH 5.0, 0.1% Brij-35 (protein grade, Calbiochem, San Diego, Calif.), and 10% glycerol were preincubated for 30 min at 30° C. Reactions were initiated by addition of substrate in a 5 µl aliquot resulting in a total volume of 25 µl. After 3 hr at 30° C. reactions were terminated by addition of an equal volume of 2x stop buffer containing 50 mM Tris-HCl pH 8.0, 0.5 M KF, 0.001% Brij-35, 20 μg/ml SA-XL665 (cross-linked allophycocyanin protein coupled to streptavidin; CIS-Bio International, France) (0.5 µg/well). Plates were shaken briefly and spun at 1200×g for 10 seconds to pellet all liquid to the bottom of the plate before the incubation. HTRF measurements were made on a Packard Discovery® HTRF plate reader using 337 nm laser light to excite the sample followed by a 50 µs delay and simultaneous measurements of both 620 nm and 665 nm emissions for 400 μs.

 IC_{50} determinations for inhibitors, (I), were determined by measuring the percent change of the relative fluorescence at 665 nm divided by the relative fluorescence at 620 nm, (665/620 ratio), in the presence of varying concentrations of I and a fixed concentration of enzyme and substrate. Nonlinear regression analysis of this data was performed using Graph-Pad Prism 3.0 software selecting four parameter logistic equation, that allows for a variable slope. Y=Bottom+(Top-Bottom)/(1+10°((Log EC50-X)*HillSlope)); X is the logarithm of concentration of I, Y is the percent change in ratio and Y starts at bottom and goes to top with a sigmoid shape.

Compounds of the present invention have an IC_{50} range from about 0.1 to about 500 μ M, preferably about 0.1 to about 100 μ M, more preferably about 0.1 to about 20 μ M. The last compound in Table M has an IC_{50} value of 0.35 μ M.

Examples of compounds under 1 µM are listed below:

-continued `CH₃ ₂₀ H_3C 0=

Human Mature Renin Enzyme Assay

Human Renin was cloned from a human kidney cDNA library and C-terminally epitope-tagged with the V5-6His sequence into pCDNA3.1. pCNDA3.1-Renin-V5-6His was stably expressed in HEK293 cells and purified to >80% using standard Ni-Affinity chromatography. The prodomain of the recombinant human renin-V5-6His was removed by limited proteolysis using immobilized TPCK-trypsin to give mature-human renin. Renin enzymatic activity was monitored using a commercially available fluorescence resonance energy

transfer (FRET) peptide substrate, RS-1(Molecular Probes, Eugene, Oreg.) in 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.1% Brij-35 and 5% DMSO buffer for 40 mins at 30 degrees celsius in the presence or absence of different concentrations of test compounds. Mature human Renin was present at approximately 200 nM. Inhibitory activity was defined as the percent decrease in renin induced fluorescence at the end of the 40 min incubation compared to vehicle controls and samples lacking enzyme.

	Compound	1% of hRenin at 100 μM
15	CH ₃ O N NH	68.8
20		
25	NH NH	75.3
30	H ₃ C N O O	
35	H ₃ C N _N O NH	76.9
40		

In the aspect of the invention relating to a combination of a compound of formula I with a cholinesterase inhibitor, acetyl- and/or butyrylcholinesterase inhibitors can be used. Examples of cholinesterase inhibitors are tacrine, donepezil, rivastigmine, galantamine, pyridostigmine and neostigmine, with tacrine, donepezil, rivastigmine and galaritamine being preferred.

In the aspect of the invention relating to a combination of a compound of formula I with a muscarinic antagonist, m₁ or m₂ antagonists can be used. Examples of m₁ antagonists are known in the art. Examples of m₂ antagonists are also known in the art; in particular, m₂ antagonists are disclosed in U.S. Pat. Nos. 5,883,096; 6,037,352; 5,889,006; 6,043,255; 5,952, 349; 5,935,958; 6,066,636; 5,977,138; 6,294,554; 6,043,255; and 6,458,812; and in WO 03/031412, all of which are incorporated herein by reference.

For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 95 percent active ingredient. Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar or

lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), Remington's Pharmaceutical Sciences, 18th 5 Edition, (1990), Mack Publishing Co., Easton, Pa.

Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.

Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as 15 an inert compressed gas, e.g. nitrogen.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.

The compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.

Preferably the compound is administered orally.

Preferably, the pharmaceutical preparation is in a unit dosage form. In such form, the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the 30 desired purpose.

The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 100 mg, preferably from about 1 mg to about 50 mg, more preferably from about 1 mg to about 25 mg, according to the 35 particular application.

The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage regimen for a particular situation is within the skill of the art. 40 For convenience, the total daily dosage may be divided and administered in portions during the day as required.

The amount and frequency of administration of the compounds of the invention and/or the pharmaceutically acceptable salts thereof will be regulated according to the judgment 45 of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical recommended daily dosage regimen for oral administration can range from about 1 mg/day to about 300 mg/day, preferably 1 mg/day to 50 50 mg/day, in two to four divided doses.

When a compound of formula I is used in combination with a cholinesterase inhibitor to treat cognitive disorders, these two active components may be co-administered simultaneously or sequentially, or a single pharmaceutical composition comprising a compound of formula I and a cholinesterase inhibitor in a pharmaceutically acceptable carrier can be administered. The components of the combination can be administered individually or together in any conventional oral or parenteral dosage form such as capsule, tablet, powder, cachet, suspension, solution, suppository, nasal spray, etc. The dosage of the cholinesterase inhibitor can be determined from published material, and may range from 0.001 to 100 mg/kg body weight.

When separate pharmaceutical compositions of a compound of formula I and a cholinesterase inhibitor are to be administered, they can be provided in a kit comprising in a

782

single package, one container comprising a compound of formula I in a pharmaceutically acceptable carrier, and a separate container comprising a cholinesterase inhibitor in a pharmaceutically acceptable carrier, with the compound of formula I and the cholinesterase inhibitor being present in amounts such that the combination is therapeutically effective. A kit is advantageous for administering a combination when, for example, the components must be administered at different time intervals or when they are in different dosage forms.

While the present invention has been described in conjunction with the specific embodiments set forth above, many alternatives, modifications and variations thereof will be apparent to those of ordinary skill in the art. All such alternatives, modifications and variations are intended to fall within the spirit and scope of the present invention.

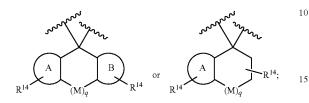
We claim:

25

1. A compound having the structural formula

Ι

or a stereoisomer, tautomer, or pharmaceutically acceptable salt thereof, wherein


W is -O—; X is -O—, $-N(R^5)$ — or $-C(R^6)(R^7)$ —; provided that when X is -O—, U is not -C(=O)— or $-C(=NR^5)$ —; U is -C(O)—, $-P(O)(OR^{15})$ —, $-C(=NR^5)$ —, or -(C

 $\begin{array}{l} (R^6)(R^7))_b \longrightarrow ; \text{ wherein b is 1 or 2;} \\ R^1 \text{ and } R^5 \text{ are independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylcycloalkyl, <math>-OR^{15} \longrightarrow -CN, \quad -C(O)R^8, \quad -C(O)OR^9, \quad -S(O)R^{10}, \quad -S(O)_2 R^{10}, \quad -C(O)N(R^{11})(R^{12}), \quad -S(O)N(R^{11})(R^{12}), \\ -S(O)_2N(R^{11})(R^{12}), \quad -NO_2, \quad -N \Longrightarrow C(R^8)_2 \quad \text{and} \\ -N(R^8)_2, \text{ provided that } R^1 \text{ and } R^5 \text{ are not both selected} \\ \text{from } -NO_2, \quad -N \Longrightarrow C(R^8)_2, \end{array}$

 R^2 is H; R^3 , R^4 , R^6 and R^7 are independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, halo, $-CH_2-O-Si(R^9)(R^{10})(R^{19}), -SH, -CN, -OR^9, -C(O)R^8, -C(O)OR^9, -C(O)N(R^{11})(R^{12}), -SR^{19}, -S(O)N(R^{11})(R^{12}), -S(O)N(R^{11})(R^{12}), -N(R^{11})C(O)R^8, -N(R^{11})S(O)R^{10}, -N(R^{11})C(O)N(R^{12})(R^{13}), -N(R^{11})C(O)OR^9$ and $-C(=NOH)R^8, provided that when U is <math display="inline">-O-$ or $-N(R^5)-$, then R^3, R^4, R^6 and R^7 are not halo, $-SH, -OR^9, -SR^{19}, -S(O)N(R^{11})(R^{12}), -S(O)_2N(R^{11})(R^{12}), -N(R^{11})C(O)R^8, -N(R^{11})S(O)R^{10}, -N(R^{11})C(O)N(R^{12}), -N(R^{11})C(O)R^8, -N(R^{11})S(O)R^{10}, -N(R^{11})C(O)N(R^{12})(R^{13}), or -N(R^{11})C(O)OR^9, -SR^{19}, -S(O)N(R^{11})(R^{12}), -S(O)_2N(R^{11})(R^{12}), -N(R^{11})(R^{12}), -N(R^{11})(R^{12$

or R^3 , R^4 , R^6 and R^7 , together with the carbon to which they are attached, form a 3-7 membered cycloalkyl group optionally substituted by R^{14} or a 3-7 membered cycloalkylether optionally substituted by R^{14}

or R³ and R⁴ or R⁶ and R⁷ together with the carbon to which they are attached, are combined to form multicyclic groups such as

wherein M is — CH_2 —, S, — $N(R^{19})$ — or O, A and B are independently aryl or heteroaryl and q is 0, 1 or 2 provided that when q is 2, one M must be a carbon atom and when q is 2, M is optionally a double bond; and with the proviso that when R^3 , R^4 , R^6 and R^7 form said multicyclic groups

$$\mathbb{R}^{14} \xrightarrow{\mathbf{A}} \mathbb{R}^{14} \xrightarrow{\mathbf{B}} \mathbb{R}^{14} \xrightarrow{\mathbf{R}^{14}} \mathbb{R}^{14};$$

then adjacent R³ and R⁴ or R⁶ and R⁷ groups cannot be combined to form said multicyclic groups;

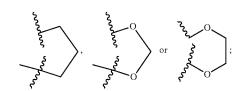
 R^8 is independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, arylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, $-OR^{15}$, $-N(R^{15})(R^{16})$, $-N(R^{15})C(O)R^{16}$, $-N(R^{15})S(O)_2R^{16}$, $-N(R^{15})S(O)_2N(R^{16})(R^{17})$, $-N(R^{15})S(O)N(R^{16})(R^{17})$, $-N(R^{15})S(O)N(R^{16})(R^{17})$ and $-N(R^{15})C(O)OR^{16}$;

R⁹ is independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl and heteroarylalkyl;

R¹⁰ is independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl and —N(R¹⁵)(R¹⁶);

 R^{11} , R^{12} and R^{13} are independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, aryl, arylalkyl, 55 heteroaryl, heteroarylalkyl, $-C(O)R^8$, $-C(O)OR^9$, $-S(O)R^{10}$, $-S(O)_2R^{10}$, $-C(O)N(R^{15})(R^{16})$, $-S(O)N(R^{15})(R^{16})$, $-S(O)N(R^{15})(R^{16})$ and -CN;

 R^{14} is 1-5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, 60 cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroarylalkyl, halo, —CN, —OR^{15}, —C(O)R^{15}, —C(O)OR^{15}, —C(O)N(R^{15})(R^{16}), —SR^{15}, —S(O)N(R^{15})(R^{16}), —S(O)_2N(R^{15})(R^{16}), —C(=NOR^{15})R^{16}, —P(O) 65 $(OR^{15})(OR^{16}), —N(R^{15})(R^{16}), —N(R^{15})C(O)R^{16}, —N(R^{15})S(O)_2R^{16}, —N(R^{15})$


S(O)₂N(R¹⁶)(R¹⁷), —N(R¹⁵)S(O)N(R¹⁶)(R¹⁷), —N(R¹⁵)C(O)N(R¹⁶)(R¹⁷) and —N(R¹⁵)C(O)OR¹⁶; R¹⁵, R¹⁶ and R¹⁷ are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, arylcycloalkyl, arylheterocycloalkyl, R¹⁸-alkyl, R¹⁸-cycloalkyl, R¹⁸-cycloalkylalkyl, R¹⁸-heterocycloalkyl, R¹⁸-heterocycloalkylalkyl, R¹⁸-aryl, R¹⁸-arylalkyl,

 $R^{18}\text{-heteroaryl}$ and $R^{18}\text{-heteroarylalkyl};$ or $R^{15},\,R^{16}$ and R^{17} are

wherein R^{23} numbers 0 to 5 substituents, m is 0 to 6 and n is 1 to 5;

R¹⁸ is 1-5 substituents independently selected from the group consisting of alkyl, alkenyl, aryl, arylalkyl, arylalkenyl, arylalkynyl, -NO2, halo, heteroaryl, HO-alkyoxyalkyl, — CF_3 , —CN, alkyl-CN, — $C(O)R^{19}$, —C(O) $-C(O)OR^{19}$, $-C(O)NHR^{20}$, $-C(O)NH_2$, $-C(O)NH_2-C(O)N(alkyl)_2$, -C(O)N(alkyl)(aryl), $-SR^{19}$, $-S(O)_2R^{20}$, —C(O)N(alkyl)(heteroaryl), $-S(O)NH_2$, -S(O)NH(alkyl), -S(O)N(alkyl)(alkyl), -S(O)NH(aryl), $-S(O)_2NH_2$ $-S(O)_2NHR^{19}$, —S(O)₂NH(heterocycloalkyl), $-S(O)_2N(alkyl)_2$, $-S(O)_2N(alkyl)(aryl), -OCF_3, -OH, -OR^{20}, -O$ heterocycloalkyl, —O-cycloalkylalkyl, —O-heterocycloalkylalkyl, —NH₂, —NHR²⁰, —N(alkyl)₂, —N(arylalkyl)₂, —N(arylalkyl)-(heteroarylalkyl), —NHC(O) R²⁰, —NHC(O)NH₂, —NHC(O)NH(alkyl), —NHC (O)N(alkyl)(alkyl), —N(alkyl)C(O)NH(alkyl), -N(alkyl)C(O)N(alkyl)(alkyl), $-NHS(O)_{2}R^{20}$, -NHS(O)₂NH(alkyl), -NHS(O)₂N(alkyl)(alkyl), $-N(alkyl)S(O)_2NH(alkyl)$ and $-N(alkyl)S(O)_2N$ (alkyl)(alkyl);

or two R¹⁸ moieties on adjacent carbons can be linked together to form

R¹⁹ is alkyl, cycloalkyl, aryl, arylalkyl or heteroarylalkyl; R²⁰ is alkyl, cycloalkyl, aryl, halo substituted aryl, arylalkyl, heteroaryl or heteroarylalkyl;

and wherein each of the alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl,

heteroaryl, heteroarylalkyl, alkenyl and alkynyl groups in R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ are independently unsubstituted or substituted by 1 to 5 R²¹ groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CN, —OR¹⁵, —C(O)R¹⁵, —C(O)OR¹⁵, $-C(O)N(R^{15})(R^{16}), -SR^{15}, -S(O)N(R^{15})(R^{16}),$ $-CH(R^{15})(R^{16}), -S(O)_2N(R^{15})(R^{16}), -C(=NOR^{15})$ R^{16} , $-P(O)(OR^{15})(OR^{16})$, $-N(R^{15})(R^{16})$, -alkyl-N $(R^{15})(R^{16})$, $-N(R^{15})C(O)R^{16}$, $-CH_2-N(R^{15})C(O)$ $\begin{array}{lll} R^{16}, & -CH_2 - N(R^{15})C(O)N(R^{16})(R^{17}), & -CH_2 - R^{15}; \\ -CH_2N(R^{15})(R^{16}), & -N(R^{15})S(O)R^{16}, & -N(R^{15}) \end{array}$ $\begin{array}{l} -\text{Cl}_{2}\text{N}(R^{-})(R^{-}), \quad -\text{N}(R^{-})\text{S}(O)_{R}^{-}, \quad -\text{N}(R^{-})\\ \text{S}(O)_{2}\text{R}^{16}, \quad -\text{CH}_{2}-\text{N}(\text{R}^{15})\text{S}(O)_{2}\text{R}^{16}, \quad -\text{N}(\text{R}^{15})\text{S}(O)_{2}\text{N}\\ (\text{R}^{16})(\text{R}^{17}), \quad -\text{N}(\text{R}^{15})\text{S}(O)\text{N}(\text{R}^{16})(\text{R}^{17}), \quad -\text{N}(\text{R}^{15})\text{C}(O)\\ \text{N}(\text{R}^{16})(\text{R}^{17}), \quad -\text{CH}_{2}-\text{N}(\text{R}^{15})\text{C}(O)\text{N}(\text{R}^{16})(\text{R}^{17}), \end{array}$ $-\text{CH}_2$ $-\text{N(R}^{15)}$ C(O)OR¹⁶ $-N(R^{15})C(O)OR^{16}$, $-S(O)R^{15}$, $=NOR^{15}$, $-N_3$, $-NO_2$ and $-S(O)_2R^{15}$; and wherein each of the alkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkenyl and alkynyl groups in R21 are independently unsubstituted or substituted by 1 to 5 R²² groups independently selected from the group consisting of alkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, heteroaryl, halo, $-CF_3$, -CN, $-OR^{15}$, $-C(O)R^{15}$, $-C(O)OR^{15}$ -alkyl-C(O)OR¹⁵, C(O)N(R¹⁵)(R¹⁶), —SR¹⁵, —S(O)N $(R^{15})(R^{16}), -S(O)_2N(R^{15})(R^{16}), -C(=NOR^{15})R^{16}$ $-P(O)(OR^{15})(OR^{16}), -N(R^{15})(R^{16}), -alkyl-N(R^{15})$ $-N(R^{15})C(O)R^{16}$, $-CH_2-N(R^{15})C(O)R^{16}$ $-N(R^{15})S(O)R^{16}$, $-N(R^{15})S(O)_2R^{16}$, —СH₂—N $\begin{array}{ll} (R^{15})S(O)_2R^{16}, & -N(R^{15})S(O)_2N(R^{16})(R^{17}), & -N(R^{15})\\ S(O)N(R^{16})(R^{17}), & -N(R^{15})C(O)N(R^{16})(R^{17}), \end{array}$ -CH₂-N(R¹⁵)C(O)N(R¹⁶)(R¹⁷), OR¹⁶, -CH₂-N(R¹⁵)C(O)OR¹⁶, $-N(R^{15})C(O)$ $-N_3$, $=NOR^{15}$, $-NO_2$, $-S(\tilde{O})R^{15}$ and $-S(\tilde{O})_2R^{15}$; or two R²¹ or two R²² moieties on adjacent carbons can be

 $\frac{\lambda}{\lambda}$, $\frac{\lambda}{\lambda}$ or $\frac{\lambda}{\lambda}$ $\frac{\lambda}{\lambda}$

linked together to form

and when R²¹ or R²² are selected from the group consisting of —C(=NOR¹⁵)R¹⁶, —N(R¹⁵)C(O)R¹⁶, —CH₂—N (R¹⁵)C(O)R¹⁶, —N(R¹⁵)S(O)₂R¹⁶, —N(R¹⁵)S(O)₂R¹⁶, —N(R¹⁵)S(O)₂N(R¹⁶) (R¹⁷), —N(R¹⁵)S(O)N(R¹⁶)(R¹⁷), —N(R¹⁵)C(O)N (R¹⁶)(R¹⁷), —CH₂—N(R¹⁵)C(O)N(R¹⁶)(R¹⁷), 55 —N(R¹⁵)C(O)OR¹⁶ and —CH₂—N(R¹⁵)C(O)OR¹⁶, R¹⁵ and R¹⁶ together can be a C₂ to C₄ chain wherein, optionally, one, two or three ring carbons can be replaced by —C(O)— or —N(H)— and R¹⁵ and R¹⁶, together with the atoms to which they are attached, form a 5 to 7 membered ring, optionally substituted by R²³; R²³ is 1 to 5 groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocycloalkyl, hete

 $-S(O)N(R^{24})(R^{25}),$

 $-C(O)N(R^{24})(R^{25}), -SR^{24},$

 $--S(O)_2N(R^{24})(R^{25}),$ $-C(=NOR^{24})R^{25}, -P(O)$ $(OR^{24})(OR^{25}), -N(R^{24})(R^{25}), -alkyl-N(R^{24})(R^{25}),$ $-N(R^{24})C(O)R^{25}$. $--CH_2--N(R^{24})C(O)R^{25}$, $-N(R^{24})S(O)R^{25}$, $-N(R^{24})S(O)_{2}R^{25}$, $-CH_{2}-N$ $(R^{24})S(O)_2R^{25}$, $-N(R^{24})S(O)_2N(R^{25})(R^{26})$, $-N(R^{24})$ $S(O)N(R^{25})(R^{26})$, $-N(R^{24})C(O)N(R^{25})(R^{26}),$ $-CH_2-N(R^{24})C(O)N(R^{25})(R^{26}),$ $-N(R^{24})C(O)$ OR^{25} , — CH_2 — $N(R^{24})C(O)OR^{25}$, — $S(O)R^{24}$ and —S(O)₂R²⁴; and wherein each of the alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkenyl and alkynyl groups in R23 are independently unsubstituted or substituted by 1 to 5 R²⁷ groups independently selected from the group consisting of alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, halo, —CF₃, —CN, $-OR^{24}$, $-C(O)R^{24}$, $-C(O)OR^{24}$, alkyl- $C(O)OR^{24}$, $C(O)N(R^{24})(R^{25}),$ $-SR^{24},$ $-S(O)N(R^{24})(R^{25}),$ $-S(O)_2N(R^{24})(R^{25}),$ $-C(=NOR^{24})R^{25},$ -P(O) $C(O)N(R^{24})(R^{25}),$ $(OR^{24})(OR^{25})$, $-N(R^{24})(R^{25})$, -alkyl-N(R²⁴)(R²⁵), $-N(R^{24})C(O)R^{25}$, $-CH_2 - \dot{N}(R^{24})C(O)R^{25}$ $-N(R^{24})S(O)R^{25}$, $-N(R^{24})S(O)_{2}R^{25}$, $-CH_{2}-N$ $-\text{CH}_2$ — $N(R^{24})\text{C}(\text{O})\text{N}(R^{25})(R^{26}),$ $\text{OR}^{25},$ — CH_2 — $N(R^{24})\text{C}(\text{O})\text{OR}^{25},$ $-N(R^{24})C(O)$ -S(O)R²⁴ and $-S(O)_2R^{24}$;

R²⁴, R²⁵ and R²⁶ are independently selected from the group consisting of H, alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkyl, heteroarylalkyl, arylcycloalkyl, R²⁷-alkyl, R²⁷-cycloalkyl, R²⁷-eycloalkyl, R²⁷-heterocycloalkyl, R²⁷-heterocycloalkyl, R²⁷-heterocycloalkyl, R²⁷-heterocycloalkyl, R²⁷-heteroarylalkyl, R²⁷-heteroarylalkyl, R²⁷-heteroarylalkyl;

R²⁷ is 1-5 substituents independently selected from the group consisting of alkyl, aryl, arylalkyl, -NO2, halo, $-CF_3$, -CN, alkyl-CN, $-C(O)R^{28}$, -C(O)OH, $-C(O)OR^{28}$. $-C(O)NHR^{29}$ $-C(O)N(alkyl)_2$ -C(O)N(alkyl)(heteroaryl), -C(O)N(alkyl)(aryl), $-SR^{28}$, $-S(O)_2R^{29}$, $-S(O)NH_2$, -S(O)NH(alkyl), —S(O)N(alkyl)(alkyl), —S(O)NH(aryl), —S(O)₂NH₂, $-S(O)_2NHR^{28}$, $-S(O)_2NH(aryl)$, $-S(O)_2NH(hetero$ cycloalkyl), —S(O)₂N(alkyl)₂, —S(O)₂N(alkyl)(aryl), —OH, —OR²⁹, —O-heterocycloalkyl, —O-cycloalkylalkyl, —O-heterocycloalkylalkyl, —NH₂, —NHR²⁹, $-N(alkyl)_2$, $-N(arylalkyl)_2$, -N(arylalkyl)(heteroarvlalkyl), —NHC(O)R²⁹, —NHC(O)NH₂, —NHC (O)NH(alkyl), —NHC(O)N(alkyl)(alkyl), —N(alkyl)C (O)NH(alkyl), —N(alkyl)C(O)N(alkyl)(alkyl), —NHS (O)₂R²⁹, —NHS(O)₂NH(alkyl), —NHS(O)₂N(alkyl) (alkyl), —N(alkyl)S(O)₂NH(alkyl) and —N(alkyl) S(O)₂N(alkyl)(alkyl);

R²⁸ is alkyl, cycloalkyl, arylalkyl or heteroarylalkyl; and R²⁹ is alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl or heteroarylalkyl;

eroarylalkyl; provided that neither R^1 nor R^5 is —C(O)-alkyl-azetidinone or alkyl di-substituted with (— $COOR^{15}$ or —C(O) N(R^{15})(R^{16})) and (— $N(R^{15})(R^{16})$, — $N(R^{15})C(O)R^{16}$, — $N(R^{15})S(O)_2R^{16}$, — $N(R^{15})S(O)_2R^{16}$, — $N(R^{15})S(O)_2R^{16}$, — $N(R^{15})S(O)_2R^{16}$) (R^{17}), — $N(R^{15})C(O)N(R^{16})(R^{17})$, or — $N(R^{15})C(O)OR^{16}$); provided that when X is — $N(R^5)$ —, U is —O— and W is — $C(R^6)(R^7)$ —, (R^3 , R^4) is not (H, —NHC(O)-alkylheteroaryl) or (H, alkyl-NHC(O)-alkylheteroaryl); and provided that when X is — $N(R^5)$ —, R^1 and R^5 are not -alkylaryl-aryl- SO_2 - $N(R^{15})(R^{16})$ wherein R^{15} is H and R^{16} is heteroaryl; and

 $_{\mathrm{IB}}$

provided that when R^1 is R^{21} -aryl or R^{21} -arylalkyl, wherein R^{21} is $-OCF_3$, $-S(O)CF_3$, $-S(O)_2CF_3$, $-S(O)_2RF_3$, $-S(O)_2RF_3$, $-S(O)_2RF_3$, $-S(O)_2RF_3$, $-OCF_3$, and $-OCF_3$, and

2. A compound of claim 1 having the structure

$$\begin{array}{c|c}
R^{5} & R^{2} \\
N & R^{1} \\
\downarrow & R^{3} & \downarrow \\
U & R^{3} & S(O)_{1-2}
\end{array}$$

$$\begin{array}{c|c}
R^5 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

$$\begin{array}{c|c}
R^6 & & R^2 \\
R^7 & & & R^3 \\
U & & & S(O)_{1,2}
\end{array}$$

$$R^6$$
 R^7
 R^3
 R^4

-continued

$$R^{5} \xrightarrow[U]{N} R^{1}$$

$$R^{3} \quad \text{or}$$

$$R^{4}$$

ΙH

3. A compound of claim 2 wherein in structures IA to IF, U is $-C(R^6)(R^7)$.

4. A compound of claim **2** of the structure IB wherein U is 25 — $C(R^6)(R^7)$ —.

5. A compound of claim 1 wherein R³, R⁴, R⁶ and R² are independently selected from the group consisting of alkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, halo, —CH₂—O—Si(Rց)(R¹)(R¹g), —SH, —CN, —ORg, —C(O)Rg, —C(O)ORg, —C(O)N(R¹¹)(R¹²), —SR¹g, —S(O)N(R¹¹)(R¹²), —S(O)₂N(R¹¹)(R¹²), —N(R¹¹)(R¹²), 35 —N(R¹¹)C(O)Rg, —N(R¹¹)S(O)R¹0, —N(R¹¹)C(O)N(R¹²) (R¹³), —N(R¹¹)C(O)ORg and —C(=NOH)Rg.

6. A compound of claim 1 wherein R³, R⁴, R⁶ and R³ are selected from the group consisting of aryl, heteroaryl, heteroarylalkyl, arylalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkylalkyl, alkyl and cycloalkylalkyl.

7. A compound of claim 1 wherein

U is -C(O)—;

45 W is —O—;

ΙE

IF

60

50

X is $-N(R^5)$ —;

R¹ is H, alkyl, R²¹-alkyl, arylalkyl, R²¹-arylalkyl, cycloalkylalkyl, R²¹-cycloalkylalkyl, heterocycloalkylalkyl or R²¹-heterocycloalkylalkyl,

R³ is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R²¹-alkyl, R²¹-cycloalkylalkyl, R²¹-cycloalkyl, R²¹aryl or R²¹-arylalkyl;

R⁴ is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R²¹-alkyl, R²¹-cycloalkylalkyl, R²¹-cycloalkyl, R²¹-aryl or R²¹-arylalkyl;

 R^5 is H, alkyl, R^{21} -alkyl, arylalkyl, R^{21} -arylalkyl, cycloalkylalkyl, R^{21} -cycloalkylalkyl, heterocycloalkylalkyl or R^{21} -heterocycloalkylalkyl;

 R^6 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R^{21} -alkyl, R^{21} -cycloalkylalkyl, R^{21} -cycloalkyl, R^{21} -aryl or R^{21} -arylalkyl;

R⁷ is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R²¹-alkyl, R²¹-cycloalkylalkyl, R²¹-cycloalkyl, R²¹-aryl or R²¹-arylalkyl;

25

35

40

50

 R^{21} is alkyl, aryl, halo, $-OR^{15}$, $-NO_2$, $-C(O)R^{15}$ $-CH_2$ — $N(R^{15})C(O)N(R^{16})(R^{17})$ or $-CH(R^{15})(R^{16})$; n is 1;

m is 1;

 R^{18} is $--OR^{20}$

R²⁰ is aryl;

R²³ is alkyl.

8. A compound of claim 7 wherein

 R^3 , R^4 , R^6 and R^7 are

$$R^{21}$$
 or R^{21} ;

R¹ and R⁵ is H, CH₃,

9. A compound of claim 1 wherein

U is -C(O)—;

W is ---O-

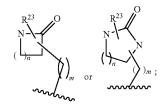
X is $-N(R^5)$ —;

790

 R^1 is H, alkyl, R^{21} -alkyl, arylalkyl, R^{21} -arylalkyl, cycloalkylalkyl, R^{21} -cycloalkylalkyl, heterocycloalky-

lalkyl or R²¹-heterocycloalkylalkyl, is alkyl, cycloalkylalkyl, aryl, arylalkyl, R²¹-alkyl, R²¹-cycloalkylalkyl, aryl, R21-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R²¹-heteroarylalkyl, R²¹-heteroaryl, R²¹-heterocycloalkyl or R²¹-heterocycloalkylalkyl;

R⁴ is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R²¹-alkyl, R²¹-cycloalkylalkyl, R²¹-cycloalkyl, R²¹aryl, R²¹-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R²¹-heteroarylalkyl, R²¹-heteroaryl, R²¹-heterocycloalkyl or R²¹-heterocycloalkylalkyl;


R⁵ is H, alkyl, R²¹-alkyl, arylalkyl, R²¹-arylalkyl, cycloalkylalkyl, R21-cycloalkylalkyl, heterocycloalky-

lalkyl or R²¹-heterocycloalkylalkyl;

 R^6 is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, $R^{21}\text{-alkyl},\ R^{21}\text{-cycloalkylalkyl},\ R^{21}\text{-cycloalkyl},\ R^{21}$ aryl, R²¹-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R21-heteroarylalkyl, R²¹-heteroaryl, R²¹-heterocycloalkyl or R²¹-heterocy-

R⁷ is alkyl, cycloalkylalkyl, cycloalkyl, aryl, arylalkyl, R²¹-alkyl, R²¹-cycloalkylalkyl, R²¹-cycloalkyl, R²¹aryl, R²¹-arylalkyl, heteroarylalkyl, heteroaryl, heterocycloalkyl, heterocycloalkylalkyl, R²¹-heteroarylalkyl, R²¹-heterocycloalkyl or R²¹-heterocycloalkylalkyl;

R¹⁵, R¹⁶ and R¹⁷ is H, cycloalkyl, cycloalkylalkyl, R¹⁸alkyl, alkyl, aryl, R¹⁸-aryl, R¹⁸-arylalkyl, arylalkyl,

n is 1 or 2;

m is 0 or 1;

R¹⁸ is —OR²⁰ or halo;

R²⁰ is aryl or halo substituted aryl;

R²¹ is alkyl, aryl, heteroaryl, R²²-alkyl, R²²-aryl, R²²-heteroaryl, halo, heterocycloalkyl, $-N(R^{15})(R^{16})$, $\begin{array}{lll} & \text{--Reary1, naio, neterocycloalky1, } --\text{N}(R^{15})(R^{19}), \\ & -\text{OR}^{15}, & -\text{NO}_2, & -\text{C}(\text{O})R^{15}, & -\text{N}(R^{15})\text{C}(\text{O})R^{16}, \\ & -\text{N}(R^{15})\text{S}(\text{O})_2R^{16}, & -\text{CH}_2-\text{N}(R^{15})\text{C}(\text{O})\text{N}(R^{16})(R^{17}), \\ & -\text{N}(R^{15})\text{C}(\text{O})\text{N}(R^{16})(R^{17}) \text{ or } -\text{CH}(R^{15})(R^{16}); \\ & R^{22} \text{ is } -\text{OR}^{15} \text{ or halo} \end{array}$

 \mathbb{R}^{23} is H or alkyl.

10. A pharmaceutical composition comprising an effective amount of a compound of claim 1 and a pharmaceutically effective carrier.